Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 04002
Number of page(s) 9
Section Engineering for Environment Development Applications
DOI https://doi.org/10.1051/e3sconf/202449104002
Published online 21 February 2024
  1. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020 May;111(5):1452-60. [CrossRef] [PubMed] [Google Scholar]
  2. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G, et al. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol. 2019;29(9):4825-32. [CrossRef] [PubMed] [Google Scholar]
  3. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015 Jul 17;349(6245):255-60. [CrossRef] [Google Scholar]
  4. Mitchell : Machine learning - Google Scholar [Internet]. [cited 2022 Apr 27]. Available from:https://scholar.google.com/scholar_lookup?title=Machine+Learning&author=T.+ Mitchell&publication_year=1997& [Google Scholar]
  5. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment - PMC [Internet]. [cited 2022 Apr 27]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563115/ [Google Scholar]
  6. Can artificial intelligence overtake human intelligence on the bumpy road towards glioma therapy? - PubMed [Internet]. [cited 2022 Apr 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/33811540/ [Google Scholar]
  7. Brindle KM, Izquierdo-Garcia JL, Lewis DY, Mair RJ, Wright AJ. Brain Tumor Imaging. J Clin Oncol. 2017 Jul 20;35(21):2432-8. [CrossRef] [PubMed] [Google Scholar]
  8. Emerging Applications of Artificial Intelligence in Neuro-Oncology - PMC [Internet]. [cited 2022 Apr 27]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389268/ [Google Scholar]
  9. Artzi M, Bressler I, Ben Bashat D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging. 2019 Aug;50(2):519-28. [CrossRef] [PubMed] [Google Scholar]
  10. Attention-Based Transformers for Instance Segmentation of Cells in Microstructures | IEEE Conference Publication | IEEE Xplore [Internet]. [cited 2022 Apr 27]. Available from: https://ieeexplore.ieee.org/abstract/document/9313305/ [Google Scholar]
  11. Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 … - Google Books [Internet]. [cited 2022 Apr 27]. Available from: https://books.google.co.in/books?hl=en&lr=&id=fphEEAAAQBAJ&oi=fnd&pg=PR5&ots=5HBhuLmN09&sig=MpMQbgmKHT6GTr4wsoC9xdKEvOY&redir_esc=y#v=onepage&q&f=false [Google Scholar]
  12. Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020 Feb;49:74-80. [CrossRef] [PubMed] [Google Scholar]
  13. Deep learning | Nature [Internet]. [cited 2022 Apr 27]. Available from: https://www.nature.com/articles/nature14539 [Google Scholar]
  14. Abdel Razek AAK, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, et al. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging. 2021 Oct 21;12:152. [CrossRef] [PubMed] [Google Scholar]
  15. Lohmann P, Galldiks N, Kocher M, Heinzel A, Filss CP, Stegmayr C, et al. Radiomics in neuro-oncology: Basics, workflow, and applications. Methods. 2021 Apr;188:112- 21. [CrossRef] [PubMed] [Google Scholar]
  16. Shaver MM, Kohanteb PA, Chiou C, Bardis MD, Chantaduly C, Bota D, et al. Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging. Cancers (Basel). 2019 Jun 14;11(6):829. [CrossRef] [PubMed] [Google Scholar]
  17. Cui S, Mao L, Jiang J, Liu C, Xiong S. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network. J Healthc Eng. 2018 Mar 19; 2018:4940593. [Google Scholar]
  18. Charron O, Lallement A, Jarnet D, Noblet V, Clavier JB, Meyer P. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med. 2018 Apr 1;95:43-54. [CrossRef] [PubMed] [Google Scholar]
  19. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery - PMC [Internet]. [cited 2022 Apr 27]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630188/ [Google Scholar]
  20. Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, et al. Deep- Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR Am J Neuroradiol. 2018 Jul;39(7):1201-7. [CrossRef] [PubMed] [Google Scholar]
  21. Daisy PS, Anitha TS. Can artificial intelligence overtake human intelligence on the bumpy road toward glioma therapy? Med Oncol. 2021 Apr 3;38(5):53. [CrossRef] [PubMed] [Google Scholar]
  22. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987-96. [CrossRef] [PubMed] [Google Scholar]
  23. Sampson JH, Maus MV, June CH. Immunotherapy for Brain Tumors. J Clin Oncol. 2017 Jul 20;35(21):2450-6. [CrossRef] [PubMed] [Google Scholar]
  24. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma - PMC [Internet]. [cited 2022 Jul 14]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762203/ [Google Scholar]
  25. De Wit: Immediate post-radiotherapy changes in malignant… - Google Scholar [Internet]. [cited 2022 Jul 14]. Available from: https://scholar.google.com/scholar_lookup?journal=Neurology&title=Immediate+post-radiotherapy+changes+in+malignant+glioma+can+mimic+tumor+progression&author=MC+de+Wit&author=HG+de+Bruin&author=W+Eijkenboom&author=PA+Sillevis+Smitt&author=MJ+van+den+Bent&volume=63&issue=3&publication_year=2004&pages=535-537&pmid=15304589& [Google Scholar]
  26. Tipping M, Eickhoff J, Ian Robins H. Clinical outcomes in recurrent glioblastoma with bevacizumab therapy: An analysis of the literature. J Clin Neurosci. 2017 Oct;44:101-6. [CrossRef] [PubMed] [Google Scholar]
  27. Macdonald DR, Cascino TL, Schold SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant Glioma. J Clin Oncol. 1990 Jul;8(7):1277-80. [CrossRef] [PubMed] [Google Scholar]
  28. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in a neuro-oncology working group. J Clin Oncol. 2010 Apr 10;28(11):1963-72. [CrossRef] [PubMed] [Google Scholar]
  29. Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab - PubMed [Internet]. [cited 2022 Jul 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/28039369/ [Google Scholar]
  30. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015 Nov;16(15):e534-42. [CrossRef] [PubMed] [Google Scholar]
  31. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015 Feb 26;372(9):793-5. [CrossRef] [PubMed] [Google Scholar]
  32. Ellingson BM, Wen PY, Cloughesy TF. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics. 2017 Apr;14(2):307-20. [CrossRef] [PubMed] [Google Scholar]
  33. Skolnik AD, Wang S, Gopal PP, Mohan S. Commentary: Pitfalls in the Neuroimaging of Glioblastoma in the Era of Antiangiogenic and Immuno/Targeted Therapy. Front Neurol. 2018;9:51. [CrossRef] [PubMed] [Google Scholar]
  34. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current Applications and Future Impact of Machine Learning in Radiology. Radiology. 2018 Aug;288(2):318-28. [CrossRef] [PubMed] [Google Scholar]
  35. Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, et al. Deep- Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR Am J Neuroradiol. 2018 Jul;39(7):1201-7. [CrossRef] [PubMed] [Google Scholar]
  36. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep Learning in Neuroradiology. AJNR Am J Neuroradiol. 2018 Oct;39(10):1776-84. [CrossRef] [PubMed] [Google Scholar]
  37. Dreyer KJ, Geis JR. When Machines Think: Radiology’s Next Frontier. Radiology. 2017 Dec;285(3):713-8. [CrossRef] [PubMed] [Google Scholar]
  38. Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology. 2018 Mar;286(3):800-9. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.