Open Access
Issue
E3S Web Conf.
Volume 494, 2024
International Conference on Ensuring Sustainable Development: Ecology, Energy, Earth Science and Agriculture (AEES2023)
Article Number 03004
Number of page(s) 9
Section Problems of the Energy Complex
DOI https://doi.org/10.1051/e3sconf/202449403004
Published online 22 February 2024
  1. A.O. Barabanov, S.V. Guzhov, Forecasting the heat load for heating using ANN, S.O.K., 11, 28-30 (2019) [Google Scholar]
  2. Haihong Bian, Qian Wang, Guozheng Xu, Xiu Zhao, Load forecasting of hybrid deep learning model considering accumulated temperature effect, Energy Reports, 8, 205-215 (2022) DOI: 10.1016/j.egyr.2021.11.082 [CrossRef] [Google Scholar]
  3. X. Dong, S. Deng, D. Wang, A short-term power load forecasting method based on kmeans and SVM, J Ambient Intell Human Comput, 13, 5253-5267 (2022) DOI: 10.1007/s12652-021-03444-x [CrossRef] [Google Scholar]
  4. J.M. González Sopeña, V. Pakrashi, B. Ghosh, A Spiking Neural Network Based Wind Power Forecasting Model for Neuromorphic Devices, Energies, 15 (2022) DOI: 10.3390/en15197256 [Google Scholar]
  5. Feng Jiang, Qiannan Zhu, Jiawei Yang, Guici Chen, Tianhai Tian, Clustering-based interval prediction of electric load using multiobjective pathfinder algorithm and Elman neural network, Applied Soft Computing, 129 (2022) DOI: 10.1016/j.asoc.2022.109602 [Google Scholar]
  6. D. Kaur, S.N. Islam, M.A. Mahmud, M.E. Haque, Z.Y. Dong, Energy forecasting in smart grid systems: recent advancements in probabilistic deep learning, IET Gener. Transm. Distrib., 16, 4461-4479 (2022) DOI: 10.1049/gtd2.12603 [CrossRef] [Google Scholar]
  7. S. Liao, G. Jimenez, A new optimal prediction technique for energy demand based on CNN and improved water strider algorithm: a study on socio– economic-climatic parameters, Evolving Systems, 13, 759-775 (2022) DOI: 10.1007/s12530-021-09409-x [CrossRef] [Google Scholar]
  8. S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, L. Delahoche, Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neu– ral Networks, Sensors, 22 (2022) DOI: 10.3390/s22114062 [CrossRef] [PubMed] [Google Scholar]
  9. Sebastian Raschka, Vahid Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Pythom, scikit-learn, and TensoFlow 2, 3rd Edition (ISBN 978-1-78995-575-0), Packt Publishing (2019) [Google Scholar]
  10. I.H. Sarker, Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions, SN COMPUT. SCI, 2, 420 (2021) https://doi.org/10.1007/s42979-021-00815-1 [Google Scholar]
  11. K. Sharma, Y.K. Dwivedi, B. Metri, Incorporating causality in energy consumption forecasting using deep neural networks, Ann Oper Res (2022) DOI: 10.1007/s10479-022-04857-3 [Google Scholar]
  12. S.-Y. Shin, H.-G. Woo, Energy Consumption Forecasting in Korea Using Machine Learning Algorithms, Energies, 15 (2022) DOI: 10.3390/en15134880 [Google Scholar]
  13. Yubo Zhao, Ni Guo, Wei Chen, Hailan Zhang, Bochao Guo, Jia Shen, Zijian Tian, Multi-step ahead forecasting for electric power load using an en– semble model, Expert Systems with Applications, 211 (2023) DOI: 10.1016/j.eswa.2022.118649 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.