Open Access
Issue
E3S Web Conf.
Volume 494, 2024
International Conference on Ensuring Sustainable Development: Ecology, Energy, Earth Science and Agriculture (AEES2023)
Article Number 04005
Number of page(s) 7
Section Current Agricultural Development
DOI https://doi.org/10.1051/e3sconf/202449404005
Published online 22 February 2024
  1. C. Buttimer, O. McAuliffe, R.P. Ross, C. Hill, J. O’Mahony, A. Coffey, Bacteriophages and bacterial plant diseases, Frontiers in microbiology, 8, 34 (2017) [Google Scholar]
  2. A.O. Charkowski, Biology and control of Pectobacterium in potato, American Journal of Potato Research, 92, 223-229 (2015) [CrossRef] [Google Scholar]
  3. J. Yasuhara-Bell, G. Marrero, M. Arif, A. de Silva, A.M. Alvarez, Development of a Loop-Mediated Isothermal Amplification Assay for the Detection of Dickeya spp., Phytopathology,107, 1339-1345 (2017) [CrossRef] [PubMed] [Google Scholar]
  4. A.O. Charkowski, The changing face of bacterial soft-rot diseases, Annual review of phytopathology, 56, d269-288 (2018) [Google Scholar]
  5. D. Bellieny-Rabelo, C.K. Tanui, N. Miguel, S. Kwenda, D.Y. Shyntum, L.N. Moleleki, Transcriptome and comparative genomics analyses reveal new functional insights on key determinants of pathogenesis and interbacterial competition in Pectobacterium and Dickeya spp, Applied and environmental microbiology, 85, e02050-18 (2019) [CrossRef] [PubMed] [Google Scholar]
  6. J.A. Lim, S. Heu, J. Park, E. Roh, Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum, a new member of a proposed genus in the subfamily Autographivirinae, Archives of virology, 162(8), 2441-2444 (2017) [Google Scholar]
  7. М. Ayisigi, A. Cokislerel, Y. Kucukcobanoglu, T. Yalcin, L.Y. Aktas, Green synthesized silver nanoparticles for an effective control on soft rodisease pathogen pectobacterium carotovorum and growth stimulation in peppe, Bulgarian Journal of Agricultural Science, 26-3, 574-58 (2020) [Google Scholar]
  8. J.W. Wang, R.C. Derilo, R.B.J.S. Lagitnay, H.P. Wu, K.I. Chen, D.Y.Chuang, Identification and characterization of the bacteriocin Carocin S3 from the multiple bacteriocin producing strain of Pectobacterium carotovorum subsp. Carotovorum, BMC microbiology, 20(1), 1-13 (2020) [CrossRef] [Google Scholar]
  9. L. Ma, C. Zhao, J. Yan, S. Che, Z. Zhou, B.Hu, Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response, Molecular plant pathology, 21(6), 871-891 (2020) [CrossRef] [PubMed] [Google Scholar]
  10. J. Fan, L. Ma, C. Zhao, J. Yan, S. Che, Z. Zhou, B. Hu, Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. Molecular plant pathology, 21(6), 871-891 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. S. Oulghazi, M. Moumni, S. Khayi, K. Robic, S. Sarfraz, C. Lopez-Roques, D. Faure, Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco, Microorganisms, 8(6), 895 (2020) [CrossRef] [PubMed] [Google Scholar]
  12. D.A. Narváez-Barragán, A. de Sandozequi, M. Rodríguez, K. Estrada, O.E. Tovar- Herrera, C. Martínez-Anaya, Analysis of two Mexican Pectobacterium brasiliense strains reveals an inverted relationship between c-di-GMP levels with exopolysaccharide production and swarming motility, Microbiological Research, 235, 126427 (2020) [CrossRef] [PubMed] [Google Scholar]
  13. X. Li, L. Fu, C. Chen, W. Sun, Y. Tian, H. Xie, Characteristics and Rapid Diagnosis of Pectobacterium carotovorum ssp. Associated With Bacterial Soft Rot of Vegetables in China, Plant Disease, 104(4), 1158-1166 (2020) [Google Scholar]
  14. P.A. Agyemang, M.N. Kabir, C.M. Kersey, C.K. Dumenyo, The Bacterial Soft Rot Pathogens, Pectobacterium carotovorum and P. atrosepticum, Respond to Different Classes of Virulence-Inducing Host Chemical Signals, Horticulturae, 6(1), 13 (2020) [CrossRef] [Google Scholar]
  15. Y. Shi, Z. Jin, X. Meng, L. Wang, X. Xie, A. Chai, B. Li, Development and Evaluation of a Loop-mediated Isothermal Amplification Assay for the Rapid Detection and Identification of Pectobacterium carotovorum on Celery in the Field, Horticultural Plant Journal, 6, 313-320 (2020) [CrossRef] [Google Scholar]
  16. I. Tsers, V. Gorshkov, N. Gogoleva, O. Parfirova, O. Petrova, Y. Gogolev, Plant Soft Rot Development and Regulation from the Viewpoint of Transcriptomic Profiling. Plants, 9(9), 1176 (2020) [CrossRef] [PubMed] [Google Scholar]
  17. D. Youdkes, Y. Helman, S. Burdman, O. Matan, E. Jurkevitch, Potential control of potato soft rot disease by the obligate predators Bdellovibrio and like organisms. Applied and Environmental Microbiology, 86(6) (2020) [CrossRef] [Google Scholar]
  18. M.P. Rodriguez, K. Dastmalchi, B. Yoo, R.E. Stark, Needle in a haystack: Antibacterial activity-guided fractionation of a potato wound tissue extract. Bioorganic Medicinal Chemistry, 28, 115428 (2020) [CrossRef] [PubMed] [Google Scholar]
  19. P. de Werra, C. Kopp, M. Häberli, I. Stöcker, A. Keil, C. Debonneville, A.Keiser, Monitoring potato seed lots to control blackleg in fields in Switzerland and southern Germany, Plant Pathology, 69(7), 1331-1346 (2020) [CrossRef] [Google Scholar]
  20. T. Aquino-Bolaños, J.A. Sánchez-García, Y.D. Ortíz-Hernández, J. Hernández-Cruz, C.I. Cortés-Martínez, Carrier and Vector of Pectobacterium carotovorum subsp. carotovorum and its Handling Through a Base of Entomopathogenic Fungi in Agave sp, Florida Entomologist, 103(2), 243-246 (2020) [CrossRef] [Google Scholar]
  21. M. Ayisigi, A. Cokislerel, Y. Kucukcobanoglu, T. Yalcin, L.Y. Aktas, Green synthesized silver nanoparticles for an effective control on soft rodisease pathogen pectobacterium carotovorum and growth stimulation in pepper, Bulgarian Journal of Agricultural Science, 26-3, 574-58 (2020) [Google Scholar]
  22. N.R. Merzah, J.H. Kadhim, Test sensitivity of some potato varieties cultivated in iraq to soft rot disease caused by pectobacterium carotovorum and its relation with contents of dry matters, starch and calcium of tubers, Plant Archives, 20(1), 798-802 (2020) [Google Scholar]
  23. N.R. Merzah, J.H. Kadhim, Efficiency of salicylic acid in induce systemic resistance in potato plants against Pectobacterium carotovorum, Plant Archives, 20 (1), 244-248 (2020) [Google Scholar]
  24. M.M. Shneider, A.A. Lukianova, P.V. Evseev, A.M. Shpirt, M.R. Kabilov, A.D. Tokmakova, A.N. Ignatov, Autographivirinae Bacteriophage Arno 160 Infects Pectobacterium carotovorum via Depolymerization of the Bacterial O-Polysaccharide, International journal of molecular sciences, 21(9), 3170 (2020) [CrossRef] [PubMed] [Google Scholar]
  25. G.K.H. Hua, E. Ali, P. Ji, Characterization of bacterial pathogens causing fruit soft rot and stem blight of bell pepper in Georgia, USA, Journal of Plant Pathology, 102, 311- 318 (2020) [CrossRef] [Google Scholar]
  26. N.A. Ashmawy, A.F. El-Bebany, A.H. Shams, A.A. Shoeib, Identification and differentiation of soft rot and blackleg bacteria from potato using nested and multiplex PCR, Journal of Plant Diseases and Protection, 127, 141-153 (2020) [CrossRef] [Google Scholar]
  27. N.A. Ashmawy, S.I. Behiry, A.A. Al-Huqail, H.M. Ali, M.Z. Salem, Bioactivity of Selected Phenolic Acids and Hexane Extracts from Bougainvilla spectabilis and Citharexylum spinosum on the Growth of Pectobacterium carotovorum and Dickeya solani Bacteria: An Opportunity to Save the Environment, Processes, 8(4), 482 (2020) [CrossRef] [Google Scholar]
  28. X. Li, L. Fu, C. Chen, W. Sun, Y. Tian, H. Xie, Characteristics and Rapid Diagnosis of Pectobacterium carotovorum ssp. Associated With Bacterial Soft Rot of Vegetables in China. Plant Disease, 104(4), 1158-1166 (2020) [CrossRef] [PubMed] [Google Scholar]
  29. A.S. Silva, J.M.Q. Luz, N.D. Tebaldi, T.P. de Morais, Diversity of Pectobacterium strains by biochemical, physiological, and molecular characterization, Bioscience Journal, (Online), 316-323 (2020) [Google Scholar]
  30. T. Nghondzweni, R. Gouws-Meyer, R. Slabbert, Efficacy of selected postharvest agrochemicals in reducing potato tuber soft rot caused by Pectobacterium carotovorum subsp. carotovorum in storage, In XXX International Horticultural Congress IHC2018: II International Symposium on Innovative Plant Protection in Horticulture, 1269, 67-74 (2018) [Google Scholar]
  31. W.B. Whitman, Bergey's manual of systematics of Archaea and Bacteria, Hoboken, NJ: Wiley, 410 (2015) [CrossRef] [Google Scholar]
  32. A.S. Labinskaya, L.P. Blinkova, A.S. Yeshchina, General and sanitary microbiology with the techniquee of microbiological research (Medicine, Moscow, 2004) [Google Scholar]
  33. J.F. Bradbury, Guide to plant pathogenic bacteria (CABI, Wallingford, UK, 1986) [Google Scholar]
  34. K.I. Beltyukova, M.S. Matyshevskaya, M.D. Kulikovskaya, S.S. Sidorenko, Research methods for pathogens of bacterial diseases of plants (Naukova Dumka, Kyiv, 1968) [Google Scholar]
  35. M.C.M. Perombelon, J.M. Van Der Wolf, Methods for the detection and quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsp. atrosepticum) on potatoes: a laboratory manual. Dundee, Scotland: Scottish Crop Research Institute Occasional Publication, 10 (2002) [Google Scholar]
  36. U. Farooq, Q. Yang, M. Wajid, U.S.Wang, Bacterial biosensing: Recent advances in phage-based bioassays and biosensors, Biosensors and Bioelectronics, 118, 204-216 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.