Open Access
Issue
E3S Web Conf.
Volume 496, 2024
International Conference on Energy, Infrastructure and Environmental Research (EIER 2024)
Article Number 01001
Number of page(s) 5
Section Advanced Functional Materials
DOI https://doi.org/10.1051/e3sconf/202449601001
Published online 12 March 2024
  1. Fei H, D. Sampson MLee Y, P. Kubiak C, M. Cohen S. Photocatalytic CO2 reduction to formate using a Mn(I) molecular cat-alyst in a robust metal–organic framework. Inorg Chem, 54(14), 6821–8. (2015) [CrossRef] [PubMed] [Google Scholar]
  2. Mark-Lee WFChong YYLaw KPAhmad IBKassim MB. Synthesis, structure and density functional theory (DFT) study of a Rhenium(I) pyridylpyrazol complex as a potential photocatalyst for CO2 reduction. Sains Malays., 47(7), 1491–9 (2018) [CrossRef] [Google Scholar]
  3. Das RChakraborty S, C. Peter S. Systematic Assessment of Solvent Selection in photocatalytic CO2 reduction. ACS Energy Lett., 6(9), 3270–4, (2021) [CrossRef] [Google Scholar]
  4. Felici MContreras-Carballada PVida YSmits JMMNolte RJM, de Cola L et al. IrIII and RuII complexes containing tria-zole-pyridine ligands: Luminescence enhancement upon substitution with β-cyclodextrin. Chemistry A European Journal., 15(47), 13124–34, (2019) [Google Scholar]
  5. Takeda HIshitani O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev., 254(3–4), 346–54, (2010) [CrossRef] [Google Scholar]
  6. M. Isegawa and A. K. Sharma, Photochemical conversion of CO2 CO to a by Re complex: Theoretical insights into the for-mation CO of and HCO3-from an experimentally detected monoalkyl carbonate complex. RSC Adv., 11(60), 37713–37725, (2021) [CrossRef] [Google Scholar]
  7. Yoko Ono, Jiro Nakamura, Hayashi Masahiko, Kazue Ichino Takahashi, Effect of substituent groups in rhenium bipyridine complexes on photocatalytic CO2 reduction. American Journal of Applied Chemistry., 2(5), 74, (2014) [Google Scholar]
  8. Nguyen PN, Dao TBN, Tran TT, Tran NAT, Nguyen TA, Phan TDL et al. Electrocatalytic CO2 reduction by [Re(CO)3Cl(3-(pyridin-2-yl)-5-phenyl-1,2,4-triazole)] and [Re(CO)3Cl(3-(2-pyridyl)-1,2,4-triazole)]. ACS Omega., 7(38), 34089–97, (2022) [CrossRef] [Google Scholar]
  9. O, W. George M, Ibusuki T, P. A. Johnson F, Koike K, Nozaki K et al. Photophysical behavior of a new CO2 reduction catalyst, Re(CO)2(bpy){P(OEt)3}2+. Inorg Chem, 33(21), 4712–7, (2002) [Google Scholar]
  10. Nakajima T, Tamaki Y, Ueno K, Kato E, Nishikawa T, Ohkubo K et al. Photocatalytic reduction of low concentration of CO2. J Am Chem Soc., 138(42), 13818–21, (2016) [CrossRef] [PubMed] [Google Scholar]
  11. Cheung PL, Machan CW, Malkhasian AYS, Agarwal J, Kubiak CP. Photocatalytic reduction of carbon dioxide CO to and HCO2H using fac-Mn(CN)(bpy)(CO)3. Inorg Chem, 55(6), 3192–8, (2016) [CrossRef] [PubMed] [Google Scholar]
  12. Takeda H, Koike K, Inoue H, Ishitani O. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. J Am Chem Soc., 130(6), 2023–31, (2008) [CrossRef] [PubMed] [Google Scholar]
  13. el Nahhas A, Consani C, María Blanco-Rodríguez A, M. Lancaster K, Braem O, Cannizzo A et al. Ultrafast excited-state dy-namics of rhenium(I) photosensitizers [Re(Cl)(CO)3(N,N)] and [Re(imidazole)(CO)3(N,N)]+: diimine effects. Inorg Chem, 50(7), 2932–43, (2011) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.