Open Access
Issue
E3S Web Conf.
Volume 496, 2024
International Conference on Energy, Infrastructure and Environmental Research (EIER 2024)
Article Number 01003
Number of page(s) 5
Section Advanced Functional Materials
DOI https://doi.org/10.1051/e3sconf/202449601003
Published online 12 March 2024
  1. S. Ismadji, F.E. Soetaredjo, A. Ayucitra, Clay Materials for Environmental Remediation 5, (2015). [Google Scholar]
  2. H.H. Murray, Applied Clay Mineralogy. Occurences, processing and application of keolins, bentonite, palygorskitesepiolite, and common clays, Clays and Clay Mineral 55, (2007). [Google Scholar]
  3. E. Balan, G. Calas, D.L. Bish, Kaolin-Group Minerals: From hydrogen-bonded layers to environmental records, Elements 10, 183-188, (2014). [CrossRef] [Google Scholar]
  4. L.C. Bertolino, A. M. Rossi, R.B. Scorzelli, M.L. Torem, Influence of iron on kaolin whiteness: An electron paramagnetic resonance study, Applied Clay Science 49, 170-175, (2010). [CrossRef] [Google Scholar]
  5. W. Cao, G. Xia, M. Lu, H. Huang, Y. Xu, Iron removal from kaolin using binuclear rare earth complex activated thiourea dioxide, Applied Clay Science 126, 63-67, (2016). [CrossRef] [Google Scholar]
  6. H.H. Murray, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Applied Clay Science 17, 207-221, (2000). [CrossRef] [Google Scholar]
  7. C. Sathy, S. Ramaswamy, Influence of mineral impurities on the properties of kaolin and its thermally treated products, Applied Clay Science 21, 133-142, (2002). [CrossRef] [Google Scholar]
  8. N. Otsuka, T. Hayashi, K. Okanish, Y. Shiraki, The removal of iron oxide from clay by sodium dithionite-sulfuric acid system (III), Journal of the clay science society of japan 14, 1974-1975, (2015). [Google Scholar]
  9. M. Lu, G. Xia, X. Zhang, Refinement of industrial kaolin by removal of iron-bearing impurities using thiourea dioxide under mechanical activation, Applied Clay Science 141, 192-197, (2017). [CrossRef] [Google Scholar]
  10. R.A. Hernandez, F. L. Garcia, L.E.H. Cruz, M. Luevanos, Iron removal from a kaolinitic clay by leaching to obtain high whiteness index, Material Science Enginering 45, 1-6, (2012). [Google Scholar]
  11. Y. Lu, H. Zhang, Q. Wang, A. Wang, Hydrochloric acid pretreatment combined with microwave-assisted oxalic acid leaching of natural red palygorskite-rich clay for efficiently change the color and properties, Applied Clay Science 228, 106594, (2022). [CrossRef] [Google Scholar]
  12. G. Wang, H. Wang, N. Zhang, In situ high temperature X-ray diffraction study of illite, Applied Clay Science 146, 254-263, (2017). [CrossRef] [Google Scholar]
  13. W. Xie, M. Huang, Enzymatic production of biodiesel using immobilized lipase on core-shell structured Fe3O4@MIL-100(Fe) composite, Catalysts 9, 850, (2019). [CrossRef] [Google Scholar]
  14. R.B. Scorzelli, L.C. Bertolino, A.B. Luz, M. Duttine, F.A.N.G. Silva, P. Munayco, Spectroscopic studies of kaolin from different Brazilian regions, Clay Minerals 43, 129-135, 2008. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.