Open Access
Issue
E3S Web Conf.
Volume 496, 2024
International Conference on Energy, Infrastructure and Environmental Research (EIER 2024)
Article Number 03004
Number of page(s) 6
Section GIS and Remote Sensing in Environmental Research
DOI https://doi.org/10.1051/e3sconf/202449603004
Published online 12 March 2024
  1. R. C. Estoque, Y. Murayama, Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987-2015), ISPRS Journal of Photogrammetry and Remote Sensing, 133 (2017). [Google Scholar]
  2. Thi Van T, Duong Xuan Bao H., Study of the Impact of Urban Development on Surface Temperature Using Remote Sensing inHo Chi Minh City, Southern Vietnam, Geographical Research, 48 (2010). [Google Scholar]
  3. T C Ha T P C Nguyen., Application of Multi-Temporal Landsat Images to Analyze the Relationship Between the Land Surface Temperature (LST) and the Land Use Land Cover (LULC) in Ho Chi Minh City, IOP Conf. Ser.: Earth Environ. Sci.,1170 012017 (2022). [Google Scholar]
  4. Hale R C, Gallo K.P, Tarpley D, Yu Y., Characterization of variability at in situ locations for calibration/validation of satellite-derived land surface temperature data, Remote Sens. Lett., 2 (2011). [Google Scholar]
  5. Imran H M, Hossain A Islam A M K S, Rahman A, Bhuiyan M E A, Paul S and Alam A., Impact of Land Cover Changes on Land Surface Temperature and Human Thermal Comfort in Dhaka City of Bangladesh, Earth Syst. Environ.,5 (2010). [Google Scholar]
  6. Chen X-L, Zhao H-M, Li P-X, Yin Z-Y., Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Remote Sensing of Environment, 104 (2006). [Google Scholar]
  7. Tonkaz T, Çetin M., Effects of urbanization and land-use type on monthly extreme temperatures in a developing semi-arid region, Turkey, Journal of Arid Environments, 68 (2007). [Google Scholar]
  8. Fathian F, Prasad A, Dehghan Z, and S Eslamian., Influence of land use/land cover change on land surface temperature using RS and GIS techniques, Int J HydrolSci Tech, 5 (2015). [Google Scholar]
  9. Chander, G.; Markham, B.L.; Helder, D.L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sens. Environ.,113(2009). [Google Scholar]
  10. Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B., Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM plus), Remote Sens., 6 (2014). [Google Scholar]
  11. Mohammad Subzar Malik, Jai Prakash Shukla Satanand Mishra, Relationship LST of NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India, Indian Journal of Geo Marine Sciences, 48 (2019). [Google Scholar]
  12. Valor, E.; Caselles, V., Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sens. Environ., 57 (1996). [Google Scholar]
  13. Zha Y, Gao J and Ni S., Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, International Journal of Remote Sensing, 24 (2003). [Google Scholar]
  14. Nguyen Ngoc Phuong Thanh, Pham Bach Viet, Ho Lam Truong. Evaluate the accuracy of Google Earth Engine in satellite imagery classification. The 15th Conference On Science & Technology, HCMUT, 20-Oct-2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.