Open Access
Issue
E3S Web Conf.
Volume 496, 2024
International Conference on Energy, Infrastructure and Environmental Research (EIER 2024)
Article Number 04001
Number of page(s) 6
Section Environment, Infrastructure Monitoring Systems and Technologies
DOI https://doi.org/10.1051/e3sconf/202449604001
Published online 12 March 2024
  1. Havard T.H. Chan, School of Public Health, Even low levels of air pollution can harm hearts, lungs in elder. (2021), accessed on 01.10.2023, https://www.hsph.harvard.edu/news/hsph-in-the-news/even-low-levels-of-air-pollution-canharm-hearts-lungs-in-elderly/. [Google Scholar]
  2. WHO New WHO Global Air Quality Guidelines aim to save millions of lives from air pollution. (2021), accessed on 01.10.2023, https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millionsof-lives-from-air-pollution. [Google Scholar]
  3. Riley, M.; Kirkwood, J.; Jiang, N.; Ross, G.; Scorgie, Air quality monitoring in NSW: From long term trend monitoring to integrated urban services, Computers in Industry, 54, 44-51, (2020). [Google Scholar]
  4. Nguyen, H. A. D.; Ha, Q.P., Wireless Sensor Network Dependable Monitoring for Urban Air Quality, IEEE Access, 10, 40051-40062, (2023). [Google Scholar]
  5. Becnel, T.; Tingey, K.; Whitaker, J.; Sayahi, T.; Le, K.; Goffin, P.; Butterfield, A.; Kelly, K.; Gaillardon, P.E, A Distributed Low-Cost Pollution Monitoring Platform. IEEE Internet of Things Journal, 6 (6), 10738-10748, (2023). [Google Scholar]
  6. Nguyen, H.A.D.; Ha, Q.P.; Duc, H.; Azzi, M.; Jiang, N.; Barthelemy, X.; Riley, M., Long short-term memory Bayesian neural network for air pollution forecast. IEEE Access, 11, 35710-35725, (2023). [CrossRef] [Google Scholar]
  7. Nguyen, H.A.D.; Le, H.T.; Ha, Q.P.; Azzi, M. Deep learning for construction emission monitoring with low-cost sensor network. Proceedings of the International Symposium on Automation and Robotics in Construction, IAARC, 40, 450-457, (2023). [Google Scholar]
  8. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J., K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, Elsevier, 178-210, (2023). [CrossRef] [Google Scholar]
  9. Govender, P.; Sivakumar, V., Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric pollution research, Elsevier, 11(1), 40-56, (2020). [CrossRef] [Google Scholar]
  10. Deng, D., DBSCAN clustering algorithm based on density. Proceedings of the 7th international forum on electrical engineering and automation, IEEE, 949–953, (2020). [Google Scholar]
  11. Tokuda, E.K.; Comin, C.H.; Costa, L.d.F., Revisiting agglomerative clustering, Physica A: Statistical mechanics and its applications, Elsevier, 585, 126433, (2022). [CrossRef] [Google Scholar]
  12. M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. National Academy of Sciences (PNAS), 99 (12), 7821-7826, (2002). [CrossRef] [PubMed] [Google Scholar]
  13. Newman, M.E.; Girvan, M., Finding and evaluating community structure in networks. Physical review E, APS, 69(2), 026113, (2004). [Google Scholar]
  14. Chatterjee, B.; Saha, H.N., Detection of communities in large scale networks, Proceedings of the 10th Annual Information Technology, Electronics and Mobile Communication Conference, IEEE, 1051–1060, (2019). [Google Scholar]
  15. The NSW-DPE, Indicative Air Quality Instrument Evaluation. (2021), accessed on 01.09.2023, https://www.environment.nsw.gov.au/research_and_publications/publications-search/indicative-air-qualityinstrument-evaluation. [Google Scholar]
  16. Kiruthika, R.; Vijaya, M., Community detection using girvan–newman and kernighan–lin bipartition algorithms. Proceedings of the 2021 International Conference of Data Intelligence And Cognitive Informatics, Springer, 217-231, (2022). [Google Scholar]
  17. Batool, F.; Hennig, C., Clustering with the average silhouette width. Computational Statistics &Data Analysis, Elsevier, 158, 107190, (2021). [CrossRef] [Google Scholar]
  18. Crawford, J.; Cohen, D.D.; Chambers, S.D.; Williams, A.G.; Atanacio, A., Impact of aerosols of sea salt origin in a coastal basin: Sydney, Australia. Atmospheric Environment, Elsevier, 207, 52-62, (2019). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.