Open Access
Issue
E3S Web Conf.
Volume 496, 2024
International Conference on Energy, Infrastructure and Environmental Research (EIER 2024)
Article Number 04004
Number of page(s) 8
Section Environment, Infrastructure Monitoring Systems and Technologies
DOI https://doi.org/10.1051/e3sconf/202449604004
Published online 12 March 2024
  1. J. K. Oh, G. Jang, S. Oh, J. H. Lee, B. J. Yi, Y. S. Moon, J. S. Lee, and Y. Choi, Bridge inspection robot system with machine vision, Autom. Constr. , 18(7), 929-941, (2009). [CrossRef] [Google Scholar]
  2. V. T. Hoang, M. D. Phung, T. H. Dinh, and Q. P. Ha, Angle-encoded swarm optimization for uav formation path planning, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 5239-5244 (2018). [Google Scholar]
  3. L. V. Nguyen, T. H. Le, Q. P. Ha, Prototypical digital twin of multi-rotor UAV control and trajectory following, ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC, 40, 148-155, (2023). [Google Scholar]
  4. I. Errandonea, S. Beltrán, and S. Arrizabalaga, Digital Twin for maintenance: A literature review, Computers in Industry, 123, 103316, (2020). [CrossRef] [Google Scholar]
  5. G. Morgenthal, N. Hallermann, J. Kersten, J. Taraben, P. Debus, M. Helmrich, and V. Rodehorst, Framework for automated UAS-based structural condition assessment of bridges. Automation in Construction, 97, 77-95, (2019). [CrossRef] [Google Scholar]
  6. H. F. Wang, L. Zhai, H. Huang, L. M. Guan, K. N. Mu, and G. Wang, Measurement for cracks at the bottom of bridges based on tethered creeping unmanned aerial vehicle. Automation in Construction, 119, 103330, (2020). [CrossRef] [Google Scholar]
  7. E.G. Kaigom and J. Roßmann, Value-driven robotic digital twins in cyber–physical applications, IEEE Trans. Industr. Inform., 17(5), 3609–3619, (2020). [Google Scholar]
  8. Z. Hu, S. Lou, Y. Xing, X. Wang, D. Cao, and C. Lv, Review and perspectives on driver digital twin and its enabling technologies for intelligent vehicles. IEEE trans. intell. veh. (2022). [Google Scholar]
  9. L. V. Nguyen, M. D. Phung, and Q. P. Ha, Iterative Learning Sliding Mode Control for UAV Trajectory Tracking, Electronics , 10(20), 2474, (2021). [CrossRef] [Google Scholar]
  10. L. V. Nguyen, M. D. Phung, and Q. P. Ha, Game Theory-Based Optimal Cooperative Path Planning for Multiple UAVs, IEEE Access, 10, 108034-108045, (2022). [CrossRef] [Google Scholar]
  11. S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey wolf optimizer, Advances in engineering software, 69, 46-61, (2014). [CrossRef] [Google Scholar]
  12. S. N. Makhadmeh, M.A. Al-Betar, I. A. Doush, M. A. Awadallah, S. Kassaymeh, S. Mirjalili, and R. A. Zitar, Recent advances in Grey Wolf Optimizer, its versions and applications, IEEE Access, (2023). [Google Scholar]
  13. X. Yu, N. Jiang, X. Wang, M. Li, A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning, Expert Syst. Appl., 215, 119327, (2023). [CrossRef] [Google Scholar]
  14. G. Michieletto, M. Ryll, A. Franchi, Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for hexarotors, 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2747–2752, (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.