Open Access
Issue
E3S Web Conf.
Volume 497, 2024
5th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2024)
Article Number 03016
Number of page(s) 8
Section Agricultural Engineering
DOI https://doi.org/10.1051/e3sconf/202449703016
Published online 07 March 2024
  1. Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E, Polysaccharides-Naturally Occurring Immune Modulators, Polymers 15(10), 2373 (2023) [CrossRef] [PubMed] [Google Scholar]
  2. Rongpipi S, Ye D, Gomez ED, Gomez EW, Progress and Opportunities in the Characterization of Cellulose – An Important Regulator of Cell Wall Growth and Mechanics, Front Plant Sci. 9, 1894 (2019) [CrossRef] [PubMed] [Google Scholar]
  3. BeMiller J, Polysaccharides: Occurrence, Significance, and Properties, In : Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience, Springer, Berlin, Heidelberg (2008) [Google Scholar]
  4. Sarkar P, Bosneaga E, Auer M, Plant cell walls throughout evolution: towards a molecular understanding of their design principles, Journal of Experimental Botany 60, 3615–3635 (2009) [CrossRef] [PubMed] [Google Scholar]
  5. Yoo HD, Kim D, Paek SH, Plant cell wall polysaccharides as potential resources for the development of novel prebiotics, Biomol Ther 20(4), 371-9 (2012) [CrossRef] [PubMed] [Google Scholar]
  6. Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR, A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications, Int J Mol Sci. 23(12), 6564 (2022) [CrossRef] [PubMed] [Google Scholar]
  7. Barclay TG, Day CM, Petrovsky N, Garg S, Review of polysaccharide particle-based functional drug delivery, Carbohydr Polym. 221, 94-112 (2019) [CrossRef] [PubMed] [Google Scholar]
  8. Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA, Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review, Polymers 10(12), 1407 (2018) [CrossRef] [PubMed] [Google Scholar]
  9. Jayawardena B, Pandithavidana DR, Sameera W, Polysaccharides in Solution: Experimental and Computational Studies, InTech. Open, London (2017) [Google Scholar]
  10. Mohammed ASA, Naveed M, Jost N. Polysaccharides ; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities), J Polym Environ. 29(8), 2359-2371 (2021) [CrossRef] [PubMed] [Google Scholar]
  11. Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY, Advances on Bioactive Polysaccharides from Medicinal Plants, Crit Rev Food Sci Nutr. 56, S60-84 (2016) [CrossRef] [PubMed] [Google Scholar]
  12. Das A, Ringu T, Ghosh S et al., A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers, Polym. Bull. 80, 7247–7312 (2023) [CrossRef] [PubMed] [Google Scholar]
  13. Li Y, Zhang C, Feng L, Shen Q, Liu F, Jiang X, Pang B, Application of natural polysaccharides and their novel dosage forms in gynecological cancers: therapeutic implications from the diversity potential of natural compounds, Front. Pharmacol. 14, 1195104 (2023) [CrossRef] [Google Scholar]
  14. MacNeill GJ, Mehrpouyan S, Minow Mark AA, Patterson JA, Tetlow IJ, Emes MJ, Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation, Journal of Experimental Botany 68, 4433–4453 (2017) [CrossRef] [PubMed] [Google Scholar]
  15. Pfister B, Zeeman SC, Formation of starch in plant cells, Cell. Mol. Life Sci. 73, 2781–2807 (2016) [CrossRef] [PubMed] [Google Scholar]
  16. Verspreet J, Dornez E, den Ende WV, Delcour JA, Cereal grain fructans: Structure, variability and potential health effects, Trends in Food Science & Technology 43, 32-42 (2015) [CrossRef] [Google Scholar]
  17. Wang M, Cheong KL. Preparation, Structural Characterisation, and Bioactivities of Fructans: A Review, Molecules 28(4), 1613 (2023) [CrossRef] [PubMed] [Google Scholar]
  18. George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and applications, Nanotechnol Sci Appl. 8, 45-54 (2015) [CrossRef] [PubMed] [Google Scholar]
  19. Mishra RK, Sabu A, Tiwari SK, Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect, Journal of Saudi Chemical Society 22, 949-978 (2018) [CrossRef] [Google Scholar]
  20. Chen C, Xi Y, Weng Y, Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications, Polymers 14(16), 3335 (2022) [CrossRef] [PubMed] [Google Scholar]
  21. Seddiqi H, Oliaei E, Honarkar H et al., Cellulose and its derivatives: towards biomedical applications, Cellulose 28, 1893–1931 (2021) [CrossRef] [Google Scholar]
  22. Gawkowska D, Cybulska J, Zdunek A, Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review, Polymers 10(7), 762 (2018) [CrossRef] [PubMed] [Google Scholar]
  23. Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A, Pectin and Pectin-Based Composite Materials: Beyond Food Texture, Molecules 23(4), 942 (2018) [CrossRef] [PubMed] [Google Scholar]
  24. Nwodo UU, Green E, Okoh AI, Bacterial exopolysaccharides: functionality and prospects, Int J Mol Sci. 13(11), 14002-14015 (2012) [CrossRef] [PubMed] [Google Scholar]
  25. Osemwegie OO, Adetunji CO, Ayeni EA, Adejobi OI, Arise RO, Nwonuma CO, Oghenekaro AO, Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa, Heliyon 6(6), e04205 (2020) [CrossRef] [PubMed] [Google Scholar]
  26. Khan R, Shah MD, Shah L, Lee PC, Khan I, Bacterial polysaccharides-A big source for prebiotics and therapeutics, Front Nutr. 9, 1031935 (2022) [CrossRef] [PubMed] [Google Scholar]
  27. Patel J, Maji B, Moorthy NSHN, Maiti S, Xanthan gum derivatives: review of synthesis, properties and diverse applications, RSC Adv. 10(45), 27103-27136 (2020) [CrossRef] [PubMed] [Google Scholar]
  28. Badwaik HR, Giri TK, Nakhate KT, Kashyap P, Tripathi DK, Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system, Curr Drug Deliv. 10(5), 587-600 (2013) [CrossRef] [PubMed] [Google Scholar]
  29. Li B, Lu F, Wei X, Zhao R, Fucoidan: structure and bioactivity, Molecules 13(8), 1671-95 (2008) [CrossRef] [PubMed] [Google Scholar]
  30. Jayawardena TU, Nagahawatta DP, Fernando IPS, Kim YT, Kim JS, Kim WS, Lee JS, Jeon YJ, A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent, Mar Drugs 20(12), 755 (2022) [CrossRef] [PubMed] [Google Scholar]
  31. Genicot-Joncour S, Poinas A, Richard O, Potin P, Rudolph B, Kloareg B, Helbert W, The cyclization of the 3,6-anhydro-galactose ring of iota-carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga Chondrus crispus, Plant Physiol. 151(3), 1609-1616 (2009) [CrossRef] [PubMed] [Google Scholar]
  32. Pacheco-Quito EM, Ruiz-Caro R, Veiga MD, Carrageenan : Drug Delivery Systems and Other Biomedical Applications, Mar Drugs 18(11), 583 (2020) [CrossRef] [PubMed] [Google Scholar]
  33. Kravchenko AO, Menchinskaya ES, Isakov VV, Glazunov VP, Yermak IM, Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity, International Journal of Molecular Sciences 24(8), 7657 (2023) [CrossRef] [PubMed] [Google Scholar]
  34. Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A, The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development, Molecules 24(17), 3122 (2019) [CrossRef] [PubMed] [Google Scholar]
  35. Wang Y, Xiong X, Huang G, Ultrasound-assisted extraction and analysis of maidenhairtree polysaccharides, Ultrason Sonochem. 95, 106395 (2023) [CrossRef] [PubMed] [Google Scholar]
  36. Choong Y-K, Ellan K, Chen X-D, Azuar Mohamad S, Extraction and Fractionation of Polysaccharides from a Selected Mushroom Species, Ganoderma lucidum: A Critical Review, IntechOpen, London (2019) [Google Scholar]
  37. Kodali J, Arunraj B, Sathvika T, Kumar SAK, Nagarathnam R, Prospective application of diethylaminoethyl cellulose (DEAE-cellulose) with a high adsorption capacity toward the detoxification of 2,4-dichlorophenoxyacetic acid (2,4-D) from water, RSC Adv. 11, 22640-22651 (2021) [CrossRef] [PubMed] [Google Scholar]
  38. Becker M, Ahn K, Bacher M, Xu C, Sundberg A, Willför S, Rosenau T, Potthast A, Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science, Cellulose 28(13), 8719-8734 (2021) [CrossRef] [PubMed] [Google Scholar]
  39. Liu D, Tang W, Yin J-Y, Nie Sh-P, Xie M-Y, Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development, Food Hydrocolloids 116, 106641 (2021) [CrossRef] [Google Scholar]
  40. Meyer M, Montero L, Meckelmann SW, Schmitz OJ, Comparative study for analysis of carbohydrates in biological samples, Anal Bioanal Chem. 414(6), 2117-2130 (2022) [CrossRef] [PubMed] [Google Scholar]
  41. Nagy G, Peng T, Pohl NLB, Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates, Anal Methods 9(24), 3579-3593 (2017) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.