Open Access
Issue
E3S Web Conf.
Volume 499, 2024
The 1st Trunojoyo Madura International Conference (1st TMIC 2023)
Article Number 01014
Number of page(s) 10
Section Dense Matter
DOI https://doi.org/10.1051/e3sconf/202449901014
Published online 06 March 2024
  1. T. K. Lim, Edible Medicinal and Non-Medicinal Plants, Volume 4., vol. 10. New York: Springer Science+Business Media B.V, 2012. [Google Scholar]
  2. B. T. T. Luyen et al., “A new phenylpropanoid and an alkylglycoside from Piper retrofractum leaves with their antioxidant and α-glucosidase inhibitory activity,” Bioorganic Med. Chem. Lett., vol. 24, no. 17, pp. 4120–4124, 2014. [CrossRef] [Google Scholar]
  3. A. E. Z. Hasan, Suryani, K. Mulia, A. Setiyono, and J. J. Silip, “Antiproliferation activities of Indonesian java chili, Piper retrofractum Vahl., against breast cancer cells (MCF-7),” Der Pharm. Lett., vol. 8, no. 18, pp. 141–147, 2016. [Google Scholar]
  4. K. J. Kim, M. S. Lee, K. Jo, and J. K. Hwang, “Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP- activated protein kinase,” Biochem. Biophys. Res. Commun., vol. 411, no. 1, pp. 219–225, 2011. [CrossRef] [Google Scholar]
  5. H. S. Bodiwala et al., “Antileishmanial amides and lignans from Piper cubeba and Piper retrofractum,” J. Nat. Med., vol. 61, no. 4, pp. 418–421, 2007. [CrossRef] [Google Scholar]
  6. U. Chansang et al., “Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum vahl) from Thailand,” J. Vector Ecol., vol. 30, no. 2, pp. 195–200, 2005. [Google Scholar]
  7. M. Rahardjo, “Tanaman Obat Afrodisiak,” War. Penelit. dan Pengemb. Tanam., vol. 16, no. 2, pp. 1–35, 2010. [Google Scholar]
  8. S. Muslichah, “Potensi Afrodisiak Kandungan Aktif Buah Cabe Jawa (Piper retrofractum Vahl) pada Tikus Jantan Galur Wistar,” J Agrotek, vol. 5, no. 2, pp. 11–20, 2011. [Google Scholar]
  9. B. Wahjoedi, Pudjiastuti, Adjirni, B. Nuratmi, and Y. Astuti, “Efek Androgenik Ekstrak Etanol Cabe Jawa (Piper retrofractum Vahl) pada Anak Ayam,” J. Bahan Alam Indones., vol. 3, no. 2, pp. 201–204, 2004. [Google Scholar]
  10. T. Usia, “Mengenal Cabe Jawa: Tanaman Obat Untuk Stamina Pria,” InfoPOM - Badan Pengawas Obat dan Makanan RI, vol. 13, no. 2, pp. 4–7, 2012. [Google Scholar]
  11. E. Evacuasiany and S. Puradisastra, “Ekstrak Biji Pala (Myristica fragans Houtt) dan Cabe Jawa (Piper retrofractum Vahl) sebagai Afrodisiak pada Tikus dan Mencit,” J. Kesehat. Masy., vol. 10, no. 2, pp. 158–166, 2011. [Google Scholar]
  12. R. Himayani, “Hubungan pemberian ekstrak cabe jawa (Piper retrofractum Vahl) terhadap jumlah spermatozoa mencit jantan dewasa,” J. Kedokt. dan Kesehat. Univ. Lampung, vol. 2, no. 2, pp. 73–76, 2012. [Google Scholar]
  13. N. Moeloek, S. W. Lestari, Yurnadi, and B. Wahyjoedi, “Uji Klinik Ekstrak Cabe Jawa (Piperis retrofractum) sebagai Fitofarmaka Androgenik pada Pria Hipogonad,” Maj Kedokt Indon, vol. 60, no. 6, pp. 255–262, 2010. [Google Scholar]
  14. U. G. Mutiara, Sutyarso, and S. Mustofa, “Pengaruh Pemberian Ekstrak Cabe Jawa (Piper retrofractum Vahl) dan Zinc (Zn) Terhadap Jumlah Sel Germinal Testis Tikus Putih Jantan (rattus norvegicus),” Major. (Medical J. Lampung Univ., vol. 2, no. 5, pp. 147–155, 2013. [Google Scholar]
  15. N. Rahmawati and I. M.S, “Efek Afrodisiaka Ramuan Cabe Jawa (Piper Retrofractum L), Pegagan (Centella asiatica) dan Temu Lawak (Curcuma domestica) Terhadap Libido Tikus Jantan,” in Seminar Nasional: Reformasi Pertanian Terintegrasi Menuju Kedaulatan Pangan, 2011, pp. 1–3. [Google Scholar]
  16. K. S. Andrade, G. Trivellin, and S. R. S. Ferreira, “Piperine-rich extracts obtained by high pressure methods,” J. Supercrit. Fluids, vol. 128, pp. 370–377, 2017. [CrossRef] [Google Scholar]
  17. D. Anissian et al., “Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy,” Int. J. Biol. Macromol., vol. 107, no. Part A, pp. 973–983, 2018. [CrossRef] [Google Scholar]
  18. M. R. Bhalekar, A. R. Madgulkar, P. S. Desale, and G. Marium, “Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis,” Drug Dev. Ind. Pharm., vol. 43, no. 6, pp. 1003–1010, 2017. [CrossRef] [PubMed] [Google Scholar]
  19. N. Ningsih, S. Yasni, and S. Yuliani, “Sintesis Nanopartikel Ekstrak Kulit Manggis Merah Dan Kajian Sifat Fungsional Produk Enkapsulasinya,” J. Teknol. dan Ind. Pangan, vol. 28, no. 1, pp. 27–35, 2017. [CrossRef] [Google Scholar]
  20. M. Pachauri, E. D. Gupta, and P. C. Ghosh, “Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy,” J. Drug Deliv. Sci. Technol., vol. 29, 2015. [Google Scholar]
  21. A. C. Suwarno, Y. Yulizar, D. O. B. Apriandanu, and R. M. Surya, “Biosynthesis of Dy2O3 nanoparticles using Piper Retrofractum Vahl extract: Optical, structural, morphological, and photocatalytic properties,” J. Mol. Struct., vol. 1264, p. 133123, 2022. [CrossRef] [Google Scholar]
  22. R. A. Hashad, R. A. H. Ishak, S. Fahmy, S. Mansour, and A. S. Geneidi, “Chitosan- tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks,” Int. J. Biol. Macromol., vol. 86, no. 2016, pp. 50–58, 2016. [CrossRef] [Google Scholar]
  23. W. Fan, W. Yan, Z. Xu, and H. Ni, “Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique,” Colloids Surfaces B Biointerfaces, vol. 90, no. 1, pp. 21–27, 2012. [CrossRef] [Google Scholar]
  24. Y. Dong, W. K. Ng, S. Shen, S. Kim, and R. B. H. Tan, “Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers,” Carbohydr. Polym., vol. 94, no. 2, pp. 940–945, 2013. [CrossRef] [Google Scholar]
  25. A. Rahman, H. Fansuri, B. D. Probowati, and A. M. M. Sa’diyah, “Efek Perlakuan Awal dengan Pulsed Electrik Field (PEF) Terhadap Kualitas Ekstrak Cabe Jamu (Piper retrofractum Vahl.),” Agrointek J. Teknol. Ind. Pertan., vol. 17, no. 4, pp. 934–943, 2023. [Google Scholar]
  26. Kementerian Kesehatan RI, Farmakope Herbal Indonesia, II. Jakarta: Kementerian Kesehatan RI, 2017. [Google Scholar]
  27. Q. Xu, Y. Shen, H. Wang, N. Zhang, S. Xu, and L. Zhang, “Application of response surface methodology to optimise extraction of flavonoids from fructus sophorae,” Food Chem., vol. 138, no. 4, pp. 2122–2129, 2013. [CrossRef] [Google Scholar]
  28. I. Veza, M. Spraggon, I. M. R. Fattah, and M. Idris, “Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition,” Results Eng., vol. 18, no. March, 2023. [Google Scholar]
  29. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, 2008. [CrossRef] [PubMed] [Google Scholar]
  30. Y. He et al., “Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis Amurensis Rupr,” Nat. Prod. Res., vol. 32, no. 1, pp. 23–29, 2018. [CrossRef] [PubMed] [Google Scholar]
  31. O. Shafqat, Z. Rehman, M. M. Shah, S. H. B. Ali, Z. Jabeen, and S. Rehman, “Synthesis, structural characterization and in vitro pharmacological properties of betanin-encapsulated chitosan nanoparticles,” Chem. Biol. Interact., vol. 370, no. December 2022, pp. 1–11, 2023. [Google Scholar]
  32. A. Fàbregas et al., “Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles,” Int. J. Pharm., vol. 446, no. 1–2, pp. 199–204, 2013. [CrossRef] [Google Scholar]
  33. V. K. Gupta and P. K. Karar, “Optimization of process variables for the preparation of chitosanalginate nanoparticles,” Int. J. Pharm. Pharm. Sci., vol. 3, no. SUPPL. 2, pp. 78–80, 2011. [Google Scholar]
  34. R. S. Dangi and S. Shakya, “Preparation, optimization and characterization of PLGA nanoparticle,” Int. J. Pharm. Life Sci., vol. 4, no. 7, pp. 2810–2818, 2013. [Google Scholar]
  35. W. Taurina, R. Sari, U. C. Hafinur, S. Wahdaningsih, and I. Isnindar, “Optimization Of Stirring Speed And Stirring Time Toward Nanoparticle Size Of Chitosan-Siam Citrus Peel (Citrus nobilis L.var Microcarpa) 70% Ethanol Extract,” Tradit. Med. J., vol. 22, no. 1, pp. 16–20, 2017. [CrossRef] [Google Scholar]
  36. W. C. G. Budastra, W. Hajrin, and D. G. Wirasisya, “Pengaruh Kecepatan Pengadukan Terhadap Karakteristik Nanopartikel Sari Buah Juwet (Syzygium cumini L.),” J. Kedokt. Unram, vol. 11, no. 3, pp. 1000–1006, 2022. [Google Scholar]
  37. A. L. de Pinho Neves, C. C. Milioli, L. Müller, H. G. Riella, N. C. Kuhnen, and H. K. Stulzer, “Factorial design as tool in chitosan nanoparticles development by ionic gelation technique,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 445, pp. 34–39, 2014. [CrossRef] [Google Scholar]
  38. J. Antoniou, F. Liu, H. Majeed, J. Qi, W. Yokoyama, and F. Zhong, “Physicochemical and morphological properties of size-controlled chitosan-tripolyphosphate nanoparticles,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 465, pp. 137–146, 2015. [CrossRef] [Google Scholar]
  39. L. Gorgani, M. Mohammadi, G. D. Najafpour, and M. Nikzad, “Piperine—The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations,” Compr. Rev. Food Sci. Food Saf., vol. 16, no. 1, pp. 1–17, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.