Open Access
Issue |
E3S Web Conf.
Volume 499, 2024
The 1st Trunojoyo Madura International Conference (1st TMIC 2023)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 8 | |
Section | Dense Matter | |
DOI | https://doi.org/10.1051/e3sconf/202449901016 | |
Published online | 06 March 2024 |
- N. Nurhayati, “The Impact of Tourism Village Development on Community Welfare,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013. [CrossRef] [PubMed] [Google Scholar]
- L. Sri and L. S. W. Wulandari, “ The potential of bangkalan regency as the center of Madura island tourism which has a strategic location and beautiful karst landscape,” 2020. [Google Scholar]
- One-Stop Investment and Integrated Services Office, “Potential of the industrial sector,” 2023. http://investment.bangkalankab.go.id/pontensi_unggulan (accessed Nov. 10, 2023). [Google Scholar]
- J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, “Sentiment Analysis of Chinese Microblog Based on Stacked Bidirectional LSTM,” IEEE Access, vol. 7, pp. 38856–38866, 2019. [CrossRef] [Google Scholar]
- A. Imron, “Sentiment Analysis of Tourist Attractions in Rembang Regency Using Naive Bayes Classifier Method,” Tek. Inform., pp. 10–13, 2019, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/14268. [Google Scholar]
- D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the art, current trends and challenges,” Multimed. Tools Appl., vol. 82, no. 3, pp. 3713–3744, Jan. 2023. [CrossRef] [PubMed] [Google Scholar]
- S. B. Kotsiantis, “Erratum: Feature selection for machine learning classification problems: A recent overview (Artificial Intelligence Review (2011)),” Artif. Intell. Rev., vol. 42, no. 1, p. 157, 2014. [CrossRef] [Google Scholar]
- S. Aggarwal and N. Chugh, “Correction to: Review of Machine Learning Techniques for EEG Based Brain Computer Interface (Archives of Computational Methods in Engineering, (2022), 29, 5, (3001-3020), 10.1007/s11831-021-09684-6),” Arch. Comput. Methods Eng., vol. 29, no. 5, p. 3531, 2022. [CrossRef] [Google Scholar]
- S. Ruan, B. Chen, K. Song, and H. Li, “Weighted naïve Bayes text classification algorithm based on improved distance correlation coefficient,” Neural Comput. Appl., vol. 34, no. 4, pp. 2729–2738, 2022. [CrossRef] [Google Scholar]
- E. Redivo, C. Viroli, and A. Farcomeni, “Quantile- distribution functions and their use for classification, with application to naïve Bayes classifiers,” Stat. Comput., vol. 33, no. 2, p. 55, 2023. [CrossRef] [Google Scholar]
- J. Singh, G. Singh, and R. Singh, “Optimization of sentiment analysis using machine learning classifiers,” Human-centric Comput. Inf. Sci., vol. 7, no. 1, p. 32, 2017. [CrossRef] [Google Scholar]
- F. Itoo, Meenakshi, and S. Singh, “Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection,” Int. J. Inf. Technol., vol. 13, no. 4, pp. 1503–1511, 2021. [Google Scholar]
- H. Langseth and T. D. Nielsen, “Classification using Hierarchical Naïve Bayes models,” Mach. Learn., vol. 63, no. 2, pp. 135–159, 2006. [CrossRef] [Google Scholar]
- R. A. Barro, I. D. Sulvianti, and F. M. Afendi, “Application of Synthetic Minority Oversampling Technique (SMOTE) to Unbalanced Data in Herbal Composition Modeling,” J. Stat., vol. 1, no. 1, pp. 1–6, 2013, [Online]. Available: https://doi.org/10.29244/xplore.v1i1.12424. [Google Scholar]
- H. Ashari, D. Arifianto, H. Azizah, and A. Faruq, “Performance Comparison of Multinomial Naïve Bayes Algorithm (MNB), Multivariate Bernoulli and Rocchio Algorithm in Classification of Indonesian Language Hoax News Content on Social Media,” http://Repository.Unmuhjember.Ac.Id, pp. 1–12, 2020. [Google Scholar]
- Doni Abdul Fatah, Eka Mala Sari Rochman, Fajrul Ihsan Kamil, and Ahmad Su’ud, “Sentiment Analysis of Madura Tourism Opinion Using Support Vector Machine (SVM),” Tech. Rom. J. Appl. Sci. Technol., vol. 16, pp. 243–249, Oct. 2023. [Google Scholar]
- Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Comparative Analysis of Data Mining Classification Algorithms for Blogger Dataset with Rapid Miner,” J. Khatulistiwa Inform., vol. VI, no. 1, pp. 20–28, 2018. [Google Scholar]
- I. M. De Diego, A. R. Redondo, R. R. Fernández, J. Navarro, and J. M. Moguerza, “General Performance Score for classification problems,” Appl. Intell., vol. 52, no. 10, pp. 12049–12063, 2022. [Google Scholar]
- M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods on Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020. [CrossRef] [Google Scholar]
- M. I. Putri and I. Kharisudin, “Application of Synthetic Minority Oversampling Technique (SMOTE) to Sentiment Analysis of Tokopedia Marketplace Application User Review Data,” Prism. Pros. Semin. Nas. Mat., vol. 5, pp. 759–766, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/. [Google Scholar]
- R. Chan et al., “What should AI see? Using the public’s opinion to determine the perception of an AI,” AI Ethics, vol. 3, no. 4, pp. 1381–1405, 2023. [Google Scholar]
- J. Li, H. Sun, and J. Li, “Beyond confusion matrix: learning from multiple annotators with awareness of instance features,” Mach. Learn., vol. 112, no. 3, pp. 1053–1075, 2023. [CrossRef] [Google Scholar]
- S.-W. Kim and J.-M. Gil, “Research paper classification systems based on TF-IDF and LDA schemes,” Human-centric Comput. Inf. Sci., vol. 9, no. 1, p. 30, 2019. [CrossRef] [Google Scholar]
- T.-P. Hong, C.-W. Lin, K.-T. Yang, and S.-L. Wang, “Using TF-IDF to hide sensitive itemsets,” Appl. Intell., vol. 38, no. 4, pp. 502–510, 2013. [Google Scholar]
- A. Dhar, H. Mukherjee, N. S. Dash, and K. Roy, “Text categorization: past and present,” Artif. Intell. Rev., vol. 54, no. 4, pp. 3007–3054, 2021. [CrossRef] [Google Scholar]
- Q. Dai, J. Liu, and J.-L. Zhao, “Distance-based arranging oversampling technique for imbalanced data,” Neural Comput. Appl., vol. 35, no. 2, pp. 1323–1342, 2023. [CrossRef] [Google Scholar]
- S. Guo, Y. Liu, R. Chen, X. Sun, and X. Wang, “Improved SMOTE Algorithm to Deal with Imbalanced Activity Classes in Smart Homes,” Neural Process. Lett., vol. 50, no. 2, pp. 1503–1526, 2019. [CrossRef] [Google Scholar]
- D. Elreedy, A. F. Atiya, and F. Kamalov, “A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning,” Mach. Learn., 2023. [Google Scholar]
- X. Chen, Y. Xue, H. Zhao, X. Lu, X. Hu, and Z. Ma, “A novel feature extraction methodology for sentiment analysis of product reviews,” Neural Comput. Appl., vol. 31, no. 10, pp. 6625–6642, 2019. [CrossRef] [Google Scholar]
- M. S. Vural and M. Gök, “Criminal prediction using Naive Bayes theory,” Neural Comput. Appl., vol. 28, no. 9, pp. 2581–2592, 2017. [CrossRef] [Google Scholar]
- Z.-L. Xiang, X.-R. Yu, and D.-K. Kang, “Experimental analysis of naïve Bayes classifier based on an attribute weighting framework with smooth kernel density estimations,” Appl. Intell., vol. 44, no. 3, pp. 611–620, 2016. [Google Scholar]
- J. Asbee, K. Kelly, T. McMahan, and T. D. Parsons, “Machine learning classification analysis for an adaptive virtual reality Stroop task,” Virtual Real., vol. 27, no. 2, pp. 1391–1407, 2023. [CrossRef] [Google Scholar]
- S.-H. Park and J. Fürnkranz, “Efficient implementation of class-based decomposition schemes for Naïve Bayes,” Mach. Learn., vol. 96, no. 3, pp. 295–309, 2014. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.