Open Access
Issue
E3S Web Conf.
Volume 499, 2024
The 1st Trunojoyo Madura International Conference (1st TMIC 2023)
Article Number 01024
Number of page(s) 8
Section Dense Matter
DOI https://doi.org/10.1051/e3sconf/202449901024
Published online 06 March 2024
  1. J.-P. Signoret and A. Leroy, Reliability Assessment of Safety and Production Systems: Analysis, Modelling, Calculations and Case Studies. Springer Nature, 2021. [Google Scholar]
  2. C. P. Gerba, “Risk assessment,” in Environmental and pollution science: Elsevier, 2019, pp. 541-563. [CrossRef] [Google Scholar]
  3. M. Stevenson, “Assessing risk assessment in action,” Minn. L. Rev., vol. 103, p. 303, 2018. [Google Scholar]
  4. M. Yazdi and E. Zarei, “Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis,” Journal of failure analysis and prevention, vol. 18, pp. 392-404, 2018. [CrossRef] [Google Scholar]
  5. M. Yazdi, S. Kabir, and M. Walker, “Uncertainty handling in fault tree based risk assessment: state of the art and future perspectives,” Process Safety and Environmental Protection, vol. 131, pp. 89-104, 2019. [CrossRef] [Google Scholar]
  6. E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools,” Computer science review, vol. 15, pp. 29-62, 2015. [CrossRef] [Google Scholar]
  7. U. Hauptmanns, “Fault tree analysis for process plants,” in Engineering risk and hazard assessment: CRC Press, 2018, pp. 21-60. [CrossRef] [Google Scholar]
  8. L. Jinfei, L. Yinglei, M. Xueming, W. Liang, and L. Jielin, “Fault tree analysis using bayesian optimization: a reliable and effective fault diagnosis approaches,” Journal of Failure Analysis and Prevention, vol. 21, pp. 619-630, 2021. [CrossRef] [Google Scholar]
  9. S. Kabir and Y. Papadopoulos, “Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review,” Safety science, vol. 115, pp. 154-175, 2019. [CrossRef] [Google Scholar]
  10. S. M. Nicoletti, E. M. Hahn, and M. Stoelinga, “BFL: a logic to reason about fault trees,” in 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2022: IEEE, pp. 441-452. [Google Scholar]
  11. S. Kabir, K. Aslansefat, I. Sorokos, Y. Papadopoulos, and S. Konur, “A hybrid modular approach for dynamic fault tree analysis,” IEEE Access, vol. 8, pp. 97175-97188, 2020. [CrossRef] [Google Scholar]
  12. K. S. Douglas and D. N. Cox, “Violence risk assessment: Science and practice,” in Clinical Forensic Psychology and Law: Routledge, 2019, pp. 3-38. [CrossRef] [Google Scholar]
  13. C. Yoe, Principles of risk analysis: decision making under uncertainty. CRC press, 2019. [Google Scholar]
  14. P. Hopkin, Fundamentals of risk management: understanding, evaluating and implementing effective risk management. Kogan Page Publishers, 2018. [Google Scholar]
  15. E. Zio, “The future of risk assessment,” Reliability Engineering & System Safety, vol. 177, pp. 176–190, 2018. [CrossRef] [Google Scholar]
  16. T. Meyer and G. Reniers, Engineering risk management. Walter de Gruyter GmbH & Co KG, 2022. [CrossRef] [Google Scholar]
  17. G. R. Mostafaii et al., “The concentration and risk assessment of potentially toxic elements (PTEs) in unrefined salt: a case study of Aran and Bidgol Lake, Iran,” International Journal of Environmental Analytical Chemistry, vol. 102, no. 5, pp. 1192-1204, 2022. [CrossRef] [Google Scholar]
  18. D. Ekinci and Ş. Beydemir, “Risk assessment of pesticides and fungicides for acid–base regulation and salt transport in rainbow trout tissues,” Pesticide biochemistry and physiology, vol. 97, no. 1, pp. 66-70, 2010. [CrossRef] [Google Scholar]
  19. P. Makhdoumi, M. Pirsaheb, A. A. Amin, S. Kianpour, and H. Hossini, “Microplastic pollution in table salt and sugar: Occurrence, qualification and quantification and risk assessment,” Journal of Food Composition and Analysis, vol. 119, p. 105261, 2023. [CrossRef] [Google Scholar]
  20. S. Carpitella et al., “A risk evaluation framework for the best maintenance strategy: The case of a marine salt manufacture firm,” Reliability Engineering & System Safety, vol. 205, p. 107265, 2021. [CrossRef] [Google Scholar]
  21. M. Barrios, G. Guilera, L. Nuño, and J. Gómez- Benito, “Consensus in the delphi method: What makes a decision change?,” Technological Forecasting and Social Change, vol. 163, p. 120484, 2021. [CrossRef] [Google Scholar]
  22. C.-C. Hsu and B. A. Sandford, “The Delphi technique: making sense of consensus,” Practical assessment, research, and evaluation, vol. 12, no. 1, p. 10, 2019. [Google Scholar]
  23. S. Humphrey-Murto and M. De Wit, “The Delphi method—more research please,” Journal of clinical epidemiology, vol. 106, pp. 136-139, 2019. [CrossRef] [Google Scholar]
  24. S. Humphrey-Murto, T. J. Wood, C. Gonsalves, K. Mascioli, and L. Varpio, “The delphi method,” Academic Medicine, vol. 95, no. 1, p. 168, 2020. [CrossRef] [PubMed] [Google Scholar]
  25. S. Drumm, C. Bradley, and F. Moriarty, “‘More of an art than a science’? The development, design and mechanics of the Delphi technique,” Research in Social and Administrative Pharmacy, vol. 18, no. 1, pp. 2230-2236, 2022. [CrossRef] [Google Scholar]
  26. N. C. Dalkey, “Delphi,” in An introduction to technological forecasting: Routledge, 2018, pp. 25-30. [CrossRef] [Google Scholar]
  27. H. Ugurlu and I. Cicek, “Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis,” Ocean Engineering, vol. 245, p. 110514, 2022. [CrossRef] [Google Scholar]
  28. F. Lai, S. Sujeet, and L. Fan, “Fuzzy fault tree analysis: Theory and application,” in Engineering risk and hazard assessment: CRC Press, 2018, pp. 117-138. [CrossRef] [Google Scholar]
  29. M. Sarbayev, M. Yang, and H. Wang, “Risk assessment of process systems by mapping fault tree into artificial neural network,” Journal of Loss Prevention in the Process Industries, vol. 60, pp. 203-212, 2019. [CrossRef] [Google Scholar]
  30. I. Häring and I. Häring, “Fault tree analysis,” Technical Safety, Reliability and Resilience: Methods and Processes, pp. 71-99, 2021. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.