Open Access
Issue
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
Article Number 01006
Number of page(s) 7
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202450001006
Published online 11 March 2024
  1. Quang Dat, T. ; Nguyen Huong Giang, L. ; Thi Tuong Loan, N. ; Van Toan, V. The prevalence of malnutrition based on anthropometry among primary schoolchildren in Binh Dinh province, Vietnam in 2016. AIMS Public Heal. 2018, 5, 203–216, doi:10.3934/publichealth.2018.3.203. [CrossRef] [Google Scholar]
  2. Wello, E.A. ; Safei, I. ; Juniarty, S. ; Kadir, A. ; Studi, P. ; Dokter, P. ; Kedokteran, F. ; Indonesia, U.M. ; Ilmu, D. ; Masyarakat, K. ; et al. Literature Review Faktor-Faktor yang Mempengaruhi Terjadinya Stunting pada Anak Balita. 2022, 1, 234–240. [Google Scholar]
  3. Yuwanti, Y. ; Mulyaningrum, F.M. ; Susanti, M.M. Faktor – Faktor Yang Mempengaruhi Stunting Pada Balita Di Kabupaten Grobogan. J. Keperawatan dan Kesehat. Masy. Cendekia Utama 2021, 10, 74, doi:10.31596/jcu.v10i1.704. [CrossRef] [Google Scholar]
  4. Supariasa Nyoman, I.D. ; Purwaningsih, H. Faktor-Faktor Yang Mempengaruhi Kejadian Stunting pada Balita di Kabupaten Malang. Karta Rahardja, J. Pembang. dan Inov. 2019, 1, 55–64. [Google Scholar]
  5. Sivanand Dynamics of the Double Burden of Malnutrition and the Changing Nutrition Reality. Physiol. Behav. 2019, 176, 139–148, doi:10.1016/S0140-6736(19)32497-3.Dynamics. [Google Scholar]
  6. Labolo, M. Government Policy in Handling Stunting and Malnutrition in Children during the COVID-19 Pandemic. Ayer J. 2021, 28, 80–99. [Google Scholar]
  7. Yuli Mardi Data Mining: Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database (KDD) . Jurnal Edik Informatika. J. Edik Inform. 2019, 2, 213–219. [Google Scholar]
  8. Ula, M. ; Fachrurrazi, S. ; Rizal, R.A. IMPLEMENTATION OF DATA MINING MODELS WITH ALGORITHMS K-NEAREST NEIGHBOR IN MONITORING THE NUTRITIONAL STATUS OF CHILDREN AND STUNTING. 2023, 6, 2–7. [Google Scholar]
  9. Alghifari, F. ; Juardi, D. Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes. J. Ilm. Inform. 2021, 9, 75–81, doi:10.33884/jif.v9i02.3755. [Google Scholar]
  10. Abhirami, K. Web usage mining using fuzzy association rule. 1st Int. Conf. Emerg. Trends Eng. Technol. Sci. ICETETS 2016 – Proc. 2016, 7–10, doi:10.1109/ICETETS.2016.7603022. [Google Scholar]
  11. Sutarno, H.H. ; Latuconsina2, R.; Dinimaharawati3, A. Prediksi Stunting Pada Balita Dengan Menggunakan Algoritma Klasifikasi K-Nearest Neighbors Stunting Prediction in Children Using K-Nearest Neighbors Classification Algorithm. e-Proceeding Eng. 2021, 8, 6657–6661. [Google Scholar]
  12. Riadi, A. ; Sulaehani, R. Analisis Implementasi Preprocessing Dengan Otsu-Gaussian Pada Pengenalan Wajah. Ilk. J. Ilm. 2019, 11, 200–205, doi:10.33096/ilkom.v11i3.457.200-205. [CrossRef] [Google Scholar]
  13. Sadhvi Anunaya Data Preprocessing in Data Mining –A Hands On Guide Available online: https://www.analyticsvidhya.com/blog/2021/08/data-preprocessing-in-data-mining-a-hands-on-guide/. [Google Scholar]
  14. Santoso, M.H. Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom. Brill. Res. Artif. Intell. 2021, 1, 54–66, doi:10.47709/brilliance.v1i2.1228. [Google Scholar]
  15. Hasani, R.A. ; Soesanti, I. ; Fauziati, S. Association Rule Pada Point of Sale Swalayan Dengan Market Basket Analysis. Semin. Nas. Dan Apl. Teknol. Di Ind. 2017, 1–7. [Google Scholar]
  16. Ruswati, R. ; Gufroni, A.I. ; Rianto, R. Associative Analysis Data Mining Pattern Against Traffic Accidents Using Apriori Algorithm. Sci. J. Informatics 2018, 5, 91–104, doi:10.15294/sji.v5i2.16199. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.