Open Access
Issue
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
Article Number 01009
Number of page(s) 7
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202450001009
Published online 11 March 2024
  1. A. A. Bello, H. Chiroma, A. Y. Gital, L. A. Gabralla, S. M. Abdulhamid, and L. Shuib, “Machine learning algorithms for improving security on touch screen devices: a survey, challenges and new perspectives,” Neural Comput. Appl., vol. 32, no. 17, pp. 13651–13678, Sep. 2020, doi: 10.1007/s00521-020-04775-0. [CrossRef] [Google Scholar]
  2. “Sensors | Free Full-Text | Review of Capacitive Touchscreen Technologies: Overview, Research Trends, and Machine Learning Approaches.” Accessed: Oct. 31, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/21/14/4776 [Google Scholar]
  3. [W. Ding, C. Wang, B. Fang, F. Sun, and J. Shan, “A Survey of Multimodal Human-Machine Interface,” in Cognitive Systems and Signal Processing, F. Sun, H. Liu, and B. Fang, Eds., in Communications in Computer and Information Science. Singapore: Springer, 2021, pp. 379–386. doi: 10.1007/978-981-16-2336-3_35. [CrossRef] [Google Scholar]
  4. L. Ge et al., “3D Hand Shape and Pose Estimation From a Single RGB Image,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10833–10842. Accessed: Oct. 31, 2023. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/html/Ge_3D_Hand_Shape_and_Pose_Estimation_From_a_Single_RGB_CVPR_2019_paper.html [Google Scholar]
  5. C. Zheng et al., “Deep Learning-based Human Pose Estimation: A Survey,” ACM Comput. Surv., vol. 56, no. 1, p. 11:1-11:37, Aug. 2023, doi: 10.1145/3603618. [Google Scholar]
  6. X. Chen, G. Wang, H. Guo, and C. Zhang, “Pose guided structured region ensemble network for cascaded hand pose estimation,” Neurocomputing, vol. 395, pp. 138–149, Jun. 2020, doi: 10.1016/j.neucom.2018.06.097. [CrossRef] [Google Scholar]
  7. C. Zimmermann, D. Ceylan, J. Yang, B. Russell, M. Argus, and T. Brox, “FreiHAND: A Dataset for Markerless Capture of Hand Pose and Shape From Single RGB Images,” presented at the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 813–822. Accessed: Oct. 31, 2023. [Online]. Available: https://openaccess.thecvf.com/content_ICCV_2019/html/Zimmermann_FreiHAND_A_Dataset_for_Markerless_Capture_of_Hand_Pose_and_ICCV_2019_paper.html [Google Scholar]
  8. “ImageNet Classification with Deep Convolutional Neural Networks (AlexNet) –actorsfit.” Accessed: Oct. 31, 2023. [Online]. Available: https://actorsfit.com/a?ID=00450-9b1db208-6e87-450e-bc1d-78f9c16d5996 [Google Scholar]
  9. J. Lin, C. Gan, and S. Han, “TSM: Temporal Shift Module for Efficient Video Understanding,” presented at the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7083–7093. Accessed: Oct. 31, 2023. [Online]. Available: https://openaccess.thecvf.com/content_ICCV_2019/html/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.html [Google Scholar]
  10. Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,” Neural Comput., vol. 31, no. 7, pp. 1235–1270, Jul. 2019, doi: 10.1162/neco_a_01199. [CrossRef] [PubMed] [Google Scholar]
  11. B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on long shortterm memory networks for time series prediction,” Procedia CIRP, vol. 99, pp. 650–655, Jan. 2021, doi: 10.1016/j.procir.2021.03.088. [CrossRef] [Google Scholar]
  12. A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Oct. 31, 2023. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html [Google Scholar]
  13. A. Paszke et al., “Automatic differentiation in PyTorch,” Oct. 2017, Accessed: Jan. 02, 2024. [Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ [Google Scholar]
  14. C. Lugaresi et al., “MediaPipe: A Framework for Building Perception Pipelines,” arXiv.org. Accessed: Jan. 02, 2024. [Online]. Available: https://arxiv.org/abs/1906.08172v1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.