Open Access
Issue
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
Article Number 01013
Number of page(s) 12
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202450001013
Published online 11 March 2024
  1. Duffy, M.C. Three-Phase Motor in Railway Traction. IEE Proceedings, Part A: Science,Measurement and Technology 1992, 139, doi:10.1049/ip-a-3.1992.0053. [Google Scholar]
  2. IEEE IEEE Recommended Practice for Monitoring Electric Power Quality; 1994; Vol. 2019;. [Google Scholar]
  3. Zhao, G. Effect Analysis of Small-Problem-Based Teaching Method for Improving Students’ Problem-Solving Ability in the Experiment of Power Electronics Course. IET Circuits, Devices and Systems 2021, 15, doi:10.1049/cds2.12051. [Google Scholar]
  4. Jannati, M. ; Sutikno, T. ; Idris, N.R.N. ; Aziz, M.J.A. Modeling of Balanced and Unbalanced Three-Phase Induction Motor under Balanced and Unbalanced Supply Based on Winding Function Method. International Journal of Electrical and Computer Engineering 2015, 5, doi:10.11591/ijece.v5i4.pp644-655. [Google Scholar]
  5. Liu, Y.C. ; Ge, X. ; Tang, Q. ; Deng, Z. ; Gou, B. Model Predictive Current Control for Four-Switch Three-Phase Rectifiers in Balanced Grids. Electron Lett 2017, 53, doi:10.1049/el.2016.3694. [Google Scholar]
  6. Adekitan, A.I. ; Samuel, I. ; Amuta, E. Dataset on the Performance of a Three Phase Induction Motor under Balanced and Unbalanced Supply Voltage Conditions. Data Brief 2019, 24, doi:10.1016/j.dib.2019.103947. [CrossRef] [PubMed] [Google Scholar]
  7. Liao, Y.H. ; Lin, Y.L. An Improved Down-Scale Evaluation System for Capacitors Utilized in High-Power Three-Phase Inverters under Balanced and Unbalanced Load Conditions. Energies (Basel) 2022, 15, doi:10.3390/en15196937. [Google Scholar]
  8. Anbarasu, E. ; Muthu Vijaya Pandiyan, S. A Novel Strategic Approach to Power Quality Improvements Using Renewable Energy System. International Journal of Applied Engineering Research 2016, 11. [Google Scholar]
  9. Al-Naimi, I.I. ; Ghaeb, J.A. ; Baniyounis, M.J. ; Al-Khawaldeh, M. Fast Detection Technique for Voltage Unbalance in Three-Phase Power System. International Journal of Power Electronics and Drive Systems 2021, 12, doi:10.11591/ijpeds.v12.i4.pp2230-2242. [Google Scholar]
  10. Hamici, Z. ; Abu Elhaija, W. Novel Current Unbalance Estimation and Diagnosis Algorithms for Condition Monitoring with Wireless Sensor Network and Internet of Things Gateway. IEEE Trans Industr Inform 2019, 15, doi:10.1109/TII.2019.2935743. [PubMed] [Google Scholar]
  11. Maurya, R. Application of Restful APIs in IOT: A Review. Int J Res Appl Sci Eng Technol 2021, 9, doi:10.22214/ijraset.2021.33013. [Google Scholar]
  12. Lohokare, J. ; Dani, R. ; Sontakke, S. ; Adhao, R. Scalable Tracking System for Public Buses Using IoT Technologies. In Proceedings of the 2017 International Conference on Emerging Trends and Innovation in ICT, ICEI 2017; 2017. [Google Scholar]
  13. Maheshwari, M.M. ; Reshmmaa, R. ; Nivetha, A. ; Saiharshitha, N. Real Time Bus Tracking and Fuel Monitoring System Using IoT Technology. International Journal of Scientific Research in Computer Science, Engineering and Information Technology © 2018 IJSRCSEIT 2018, 3. [Google Scholar]
  14. Kaur, S. ; Khanna, V. Implementation and Comparison of MQTT, WebSocket, and HTTP Protocols for Smart Room IoT Application in Node-RED. In Internet of Things; 2022. [Google Scholar]
  15. Joseph, M. ; Pandya, P. FINDING RESPONSE TIMES IN A REAL-TIME SYSTEM. Computer Journal 1986, 29, doi:10.1093/comjnl/29.5.390. [Google Scholar]
  16. Shofa, R.N. ; Sulastri, H. ; Firmansyah ; Nursuwars, F.M.S. Caribi Mobile Application Business Process Modeling. In; 2023; pp. 52–57. [Google Scholar]
  17. Rahayu, A.U. ; Faridah, L. ; Hiron, N. ; Nursuwars, F.M.S. Livestock Weighing System Using the Internet of Things (Iot) for Caribi Marketplace. In; 2023; pp. 233–243. [Google Scholar]
  18. Faridah, L. ; Rahayu, A.U. ; Shopa, R.N. ; Sulastri, H. ; Hiron, N. ; Nursuwars, F.M.S. Caribi Mobile Application Based on Radio Frequency Identification (RFID) for Internet of Things (IoT); 2022; Vol. 4;. [Google Scholar]
  19. Nursuwars, F.M.S. ; Audika, R.F. ; Sutisna, S. ; Taufiqurrahman, I. Smart Laboratory Using Radio Frequency Identification (RFID) Based on The Internet of Things. Journal of Computer Engineering, Electronics and Information Technology 2023, 1, 75–90, doi:10.17509/coelite.v1i2.51618. [CrossRef] [Google Scholar]
  20. Nursuwars, F.M.S. ; Kurniati, N.I. Accelerometer as Land Movement Early Detection with Internet of Thing (IoT) Concept. The 1st International Conference on Islam, Science and Technology (ICONISTECH) 2019 2020, 1. [Google Scholar]
  21. Putra, M.F. ; Sutisna ; Nursuwars, F.M.S. Integrated Fire Emergency Response Mitigation System Based on Internet of Things. In Proceedings of the AIP Conference Proceedings; 2023; Vol. 2772. [Google Scholar]
  22. Abdelqawy, D. ; El-Korany, A. ; Kamel, A. ; Makady, S. Hub-OS: An Interoperable IoT Computing Platform for Resources Utilization with Real-Time Support. Journal of King Saud University – Computer and Information Sciences 2022, 34, doi:10.1016/j.jksuci.2022.02.011. [Google Scholar]
  23. Kong, L. ; Tan, J. ; Huang, J. ; Chen, G. ; Wang, S. ; Jin, X. ; Zeng, P. ; Khan, M. ; Das, S.K. Edge-Computing-Driven Internet of Things: A Survey. ACM Comput Surv 2023, 55, doi:10.1145/3555308. [CrossRef] [Google Scholar]
  24. Smolka, S. ; Wißenberg, L. ; Mann, Z.Á. EdgeDecAp: An Auction-Based Decentralized Algorithm for Optimizing Application Placement in Edge Computing. J Parallel Distrib Comput 2023, 175, doi:10.1016/j.jpdc.2023.01.002. [Google Scholar]
  25. Wang, X. ; Ning, Z. ; Guo, S. Multi-Agent Imitation Learning for Pervasive Edge Computing: A Decentralized Computation Offloading Algorithm. IEEE Transactions on Parallel and Distributed Systems 2021, 32, doi:10.1109/TPDS.2020.3023936. [Google Scholar]
  26. Sun, Y. ; Ochiai, H. ; Esaki, H. Decentralized Deep Learning for Multi-Access Edge Computing: A Survey on Communication Efficiency and Trustworthiness. IEEE Transactions on Artificial Intelligence 2022, 3, doi:10.1109/TAI.2021.3133819. [Google Scholar]
  27. Jin, W. ; Xu, Y. ; Dai, Y. ; Xu, Y. Blockchain-Based Continuous Knowledge Transfer in Decentralized Edge Computing Architecture. Electronics (Switzerland) 2023, 12, doi:10.3390/electronics12051154. [Google Scholar]
  28. Bonnah, E. ; Shiguang, J. DecChain: A Decentralized Security Approach in Edge Computing Based on Blockchain. Future Generation Computer Systems 2020, 113, doi:10.1016/j.future.2020.07.009. [Google Scholar]
  29. Cui, L. ; Yang, S. ; Chen, Z. ; Pan, Y. ; Ming, Z. ; Xu, M. A Decentralized and Trusted Edge Computing Platform for Internet of Things. IEEE Internet Things J 2020, 7, doi:10.1109/JIOT.2019.2951619. [Google Scholar]
  30. Song, S. ; Fang, Z. ; Jiang, J. Fast-DRD: Fast Decentralized Reinforcement Distillation for Deadline-Aware Edge Computing. Inf Process Manag 2022, 59, doi:10.1016/j.ipm.2021.102850. [Google Scholar]
  31. Ferrer, A.J. ; Marquès, J.M. ; Jorba, J. Towards the Decentralised Cloud: Survey on Approaches and Challenges for Mobile, Ad Hoc, and Edge Computing. ACM Comput Surv 2019, 51, doi:10.1145/3243929. [CrossRef] [Google Scholar]
  32. Costa, B. ; Bachiega, J. ; De Carvalho, L.R. ; Araujo, A.P.F. Orchestration in Fog Computing: A Comprehensive Survey. ACM Comput Surv 2023, 55. [CrossRef] [Google Scholar]
  33. Sabireen, H. ; Neelanarayanan, V. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges. ICT Express 2021, 7, doi:10.1016/j.icte.2021.05.004. [Google Scholar]
  34. Atlam, H.F. ; Walters, R.J. ; Wills, G.B. Fog Computing and the Internet of Things: A Review. Big Data and Cognitive Computing 2018, 2. [Google Scholar]
  35. Stergiou, C. ; Psannis, K.E. ; Kim, B.G. ; Gupta, B. Secure Integration of IoT and Cloud Computing. Future Generation Computer Systems 2018, 78, doi:10.1016/j.future.2016.11.031. [Google Scholar]
  36. Abdulkareem, N.M. ; Zeebaree, S.R.M. ; Sadeeq, M.A.M. ; Ahmed, D.M. ; Sami, A.S. ; Zebari, R.R. IoT and Cloud Computing Issues, Challenges and Opportunities: A Review. Qubahan Academic Journal 2021, 1. [Google Scholar]
  37. Mohammed Sadeeq, M. ; Abdulkareem, N.M. ; Zeebaree, S.R.M. ; Mikaeel Ahmed, D. ; Saifullah Sami, A. ; Zebari, R.R. IoT and Cloud Computing Issues, Challenges and Opportunities: A Review. Qubahan Academic Journal 2021, 1, doi:10.48161/qaj.v1n2a36. [CrossRef] [Google Scholar]
  38. Kleinschmidt, J.H. ; Kamienski, C. ; Prati, R.C. ; Kolehmainen, K. ; Aguzzi, C. End-to-End Security in the IoT Computing Continuum: Perspectives in the SWAMP Project. In Proceedings of the 2019 9th Latin-American Symposium on Dependable Computing, LADC 2019 – Proceedings; 2019. [Google Scholar]
  39. Li, M. ; Rao, B. ; Ding, Y.H. ; Li, D. ; Jia, R. ; Zhang, W. Phase-Detection-Based Feedback Control for the Power Supply in Tearing Mode Control System on J-TEXT. Fusion Engineering and Design 2019, 146, doi:10.1016/j.fusengdes.2019.03.122. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.