Open Access
Issue
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
Article Number 01018
Number of page(s) 10
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202450001018
Published online 11 March 2024
  1. Astuti, L.G. ; Informatika, P.S. ; Udayana, U. Implementasi LSTM Pada Analisis Sentimen Review Film Menggunakan Adam Dan RMSprop Optimizer. 2022, 10, 351–362. [Google Scholar]
  2. Murthy, G.S.. ; Allu, S.R. ; Andhavarapu, B. ; Bgadi, M. ; Belusonti, M. Text Based Sentiment Analysis Using Long Short Term Memory (LSTM). Int. J. Eng. Res. Technol. 2020, 9, 299–303. [Google Scholar]
  3. Shi, M. ; Wang, K. ; Li, C. A C-LSTM with Word Embedding Model for News Text Classification. Proc. – 18th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2019 2019, 253–257, doi:10.1109/ICIS46139.2019.8940289. [Google Scholar]
  4. Putra, P.K. ; Mahendra, R. ; Budi, I. Traffic and Road Conditions Monitoring System Using Extracted Information from Twitter. J. Big Data 2022, 9, doi:10.1186/s40537-022-00621-3. [CrossRef] [Google Scholar]
  5. Khine, A.H. ; Wettayaprasit, W. ; Duangsuwan, J. A Novel Meta-Embedding Technique for Drug Reviews Sentiment Analysis. IAES Int. J. Artif. Intell. 2023, 12, 1938–1946, doi:10.11591/ijai.v12.i4.pp1938-1946. [Google Scholar]
  6. Hayaty, M. ; Laksito, A.D. ; Adi, S. Hate Speech Detection on Indonesian Text Using Word Embedding Method-Global Vector. IAES Int. J. Artif. Intell. 2023, 12, 1928–1937, doi:10.11591/ijai.v12.i4.pp1928-1937. [Google Scholar]
  7. Hassan, A. ; Mahmood, A. Deep Learning for Sentence Classification. 2017 IEEE Long Isl. Syst. Appl. Technol. Conf. LISAT 2017 2017, doi:10.1109/LISAT.2017.8001979. [Google Scholar]
  8. Yudi Widhiyasana ; Transmissia Semiawan ; Ilham Gibran Achmad Mudzakir; Muhammad Randi Noor Penerapan Convolutional Long Short-Term Memory Untuk Klasifikasi Teks Berita Bahasa Indonesia. J. Nas. Tek. Elektro dan Teknol. Inf. 2021, 10, 354–361, doi:10.22146/jnteti.v10i4.2438. [Google Scholar]
  9. Anjasmoros, M.T. ; Istiadi ; Marisa, F. Seminar Nasional Hasil Riset Prefix-RTR Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan Nbc (Studi Kasus: Komentar Pada Play Store). Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020) 2020, 489–498. [Google Scholar]
  10. Iskandar Zulkarnain Maulana Putra, T. ; Farhan Bukhori, A. ; Ilmu Pengetahuan Alam, dan; Gadjah Mada, U. Model Klasifikasi Berbasis Multiclass Classification Dengan Kombinasi Indobert Embedding Dan Long Short-Term Memory Untuk Tweet Berbahasa Indonesia (Classification Model Based on Multiclass Classification with a Combination of Indobert Embedding and Long . J. Ilmu Siber dan Teknol. Digit. 2022, 1, 1–28. [Google Scholar]
  11. Hermanto, D.T. ; Setyanto, A. ; Luthfi, E.T. ; Yogyakarta, U.A. Algoritma LSTM-CNN Untuk Sentimen Klasifikasi Dengan Word2vec Pada Media Online. 64–77. [Google Scholar]
  12. Gajendran, S. ; D, M. ; Sugumaran, V. Character Level and Word Level Embedding with Bidirectional LSTM – Dynamic Recurrent Neural Network for Biomedical Named Entity Recognition from Literature. J. Biomed. Inform. 2020, 112, 103609, doi:10.1016/j.jbi.2020.103609. [CrossRef] [Google Scholar]
  13. Alghifari, D.R. ; Edi, M. ; Firmansyah, L. Implementasi Bidirectional LSTM Untuk Analisis Sentimen Terhadap Layanan Grab Indonesia Bidirectional LSTM Implementation for Sentiment Analysis Against Grab Indonesia Services. 2022, 12, 89–99. [Google Scholar]
  14. Ashawa, M. ; Douglas, O. ; Osamor, J. ; Jackie, R. Improving Cloud Efficiency through Optimized Resource Allocation Technique for Load Balancing Using LSTM Machine Learning Algorithm. J. Cloud Comput. 2022, 11, doi:10.1186/s13677-022-00362-x. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.