Open Access
Issue
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
Article Number 02004
Number of page(s) 10
Section Earth and Environmental Science
DOI https://doi.org/10.1051/e3sconf/202450002004
Published online 11 March 2024
  1. McMillan, H. A Taxonomy of Hydrological Processes and Watershed Function. Hydrol Process 2022, 36, e14537, doi:https://doi.org/10.1002/hyp.14537. [Google Scholar]
  2. Donmez, C. ; Berberoglu, S. ; Curran, P.J. Modelling the Current and Future Spatial Distribution of NPP in a Mediterranean Watershed. International Journal of Applied Earth Observation and Geoinformation 2011, 13, 336–345, doi: https://doi.org/10.1016/j.jag.2010.12.005. [CrossRef] [Google Scholar]
  3. Zhao, F. ; Wu, Y. ; Sivakumar, B. ; Long, A. ; Qiu, L. ; Chen, J. ; Wang, L. ; Liu, S. ; Hu, H. Climatic and Hydrologic Controls on Net Primary Production in a Semiarid Loess Watershed. J Hydrol (Amst) 2019, 568, 803–815, doi: https://doi.org/10.1016/j.jhydrol.2018.11.031. [CrossRef] [Google Scholar]
  4. Chen, Y. ; Wang, J. ; Xiong, N. ; Sun, L. ; Xu, J. Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation. Remote Sens (Basel) 2022, 14. [Google Scholar]
  5. Li, H. ; Yang, D. ; Gao, C. ; Liu, W. Effects of Built Area on Net Primary Productivity Provided by Different Landscape Characters and the Promotion Potential. Front Environ Sci 2022, 10, doi:10.3389/fenvs.2022.988362. [Google Scholar]
  6. Xu, J. ; Dong, J. ; Wu, L. ; Shao, G. ; Yang, H. Land Use/Cover Change and Its Impact on Net Primary Productivity in Huangfuchuan Watershed Temperate Grassland, China BT – Geo-Informatics in Resource Management and Sustainable Ecosystem.; Bian, F., Xie, Y., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; pp. 664–683. [Google Scholar]
  7. Danardono; Sunariya, M.I.T.; Fikriyah, V.N.; Cholil, M. Spatiotemporal Variation of Terrestrial Carbon Sequestration in Tropical Urban Area (Case Study in Surakarta District, Indonesia). Quaestiones Geographicae 2021, 40, 5–20, doi:doi:10.2478/quageo-2021-0020. [CrossRef] [Google Scholar]
  8. Anna, A.N. ; Suharjo; Rudiyanto ANALISIS PERUBAHAN PENGGUNAAN LAHAN TAHUN 2004-2014 DAN The 8 Th University Research Colloquium 2018 Universitas Muhammadiyah Purwokerto. In Proceedings of the The 8th University Research Colloquium 2018 Universitas Muhammadiyah Purwokerto; 2018; pp. 52–59. [Google Scholar]
  9. Mechram, S. ; Mawardi, M. ; Sudira, P. Aplication Model AVSWAT2000 to Predict Surface Runoff, Erosion, and Sedimentation in Keduang Watershed: Upper Bengawan Solo Watershed. Agritech 2013, 32, 325–330. [Google Scholar]
  10. Bian, J. ; Li, A. ; Deng, W. Estimation and Analysis of Net Primary Productivity of Ruoergai Wetland in China for the Recent 10 Years Based on Remote Sensing International Society for Environmental Information Sciences 2010 Annual Conference (ISEIS) Estimation and Analysis of Net p. Procedia Environ Sci 2015, 2, 288–301, doi:10.1016/j.proenv.2010.10.035. [CrossRef] [Google Scholar]
  11. Gong, W. ; Wang, L. ; Lin, A. ; Zhang, M. Evaluating the Monthly and Interannual Variation of Net Primary Production in Response to Climate in Wuhan during 2001 to 2010. Geosciences Journal 2012, 16, 347–355, doi:10.1007/s12303-012-0025-4. [CrossRef] [Google Scholar]
  12. Wang, B. ; Yang, S. ; Lu, C. ; Zhang, J. ; Wang, Y. Comparison of Net Primary Productivity in Karst and Non-Karst Areas: A Case Study in Guizhou Province, China. Environ Earth Sci 2010, 59, 1337–1347, doi:10.1007/s12665-009-0121-6. [CrossRef] [Google Scholar]
  13. Potter, C.S. ; Randerson, J.T. ; Field, C.B. ; Matson, P.A. ; Vitousek, P.M. ; Mooney, H.A. ; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Global Biogeochem Cycles 1993, 7, 811–841, doi:10.1029/93GB02725. [CrossRef] [Google Scholar]
  14. Prince, S.D. ; Goward, S.N. Global Primary Production: A Remote Sensing Approach. J Biogeogr 1995, 22, 815–835. [CrossRef] [Google Scholar]
  15. Goetz, S.J. ; Prince, S.D. ; Small, J. ; Gleason, A.C.R. Interannual Variability of Global Terrestrial Primary Production: Observations That Differed Regionally over the 8-Year Integrated Global Slight Trend toward Increased Values through with Boreal Regions Increasing Regions for Each IøC Rise in Air Tempera. J Geophys Res 2000, 105, 20077–20091. [CrossRef] [Google Scholar]
  16. Xiao, X. ; Zhang, Q. ; Saleska, S. ; Hutyra, L. ; Camargo, P. ; Wofsy, S.C. ; Frolking, S. ; Boles, S. ; Keller, M. ; Moore, B. Satellite-Based Modeling of Gross Primary Production in a Seasonally Moist Tropical Evergreen Forest. Remote Sens Environ 2005, 94, 105–122. [CrossRef] [Google Scholar]
  17. Basuki, I. ; Kauffman, J.B. ; Peterson, J. ; Anshari, G. ; Murdiyarso, D. Land Cover Changes Reduce Net Primary Production in Tropical Coastal Peatlands of West Kalimantan, Indonesia. Mitigation Adaptation Strategy Global Change 2019, 24, 557–573. [CrossRef] [Google Scholar]
  18. Potter, C. ; Klooster, S. ; Genovese, V. ; Hiatt, C. Forest Production Predicted from Satellite Image Analysis for the Southeast Asia Region. Carbon Balance Manag 2013, 8, 1–6, doi:10.1186/1750-0680-8-9. [CrossRef] [PubMed] [Google Scholar]
  19. Hertel, D. ; Moser, G. ; Culmsee, H. ; Erasmi, S. ; Horna, V. ; Schuldt, B. ; Leuschner, C. Forest Ecology and Management Below– and above-Ground Biomass and Net Primary Production in a Paleotropical Natural Forest (Sulawesi, Indonesia) as Compared to Neotropical Forests. For Ecol Manage 2009, 258, 1904–1912, doi:10.1016/j.foreco.2009.07.019. [CrossRef] [Google Scholar]
  20. Danardono, D. ; Haryono, E. ; Widyastuti, M. The Nature of Carbon Flux in Various Ecosystem Types in the Biduk-Biduk Karst Region, Berau District, East Kalimantan. E3s Web of Conferences 2019, 76, 1–7. [Google Scholar]
  21. Archer, D. The Global Carbon Cycle; Princeton University Press: United States, 2010; [CrossRef] [Google Scholar]
  22. Laksono, A. ; Saputri, A.A. ; Pratiwi, C.I.B. ; Arkan, M.Z. ; Putri, R.F. Vegetation Covers Change and Its Impact on Barchan Dune Morphology in Parangtritis Coast, Indonesia. E3S Web of Conferences 2020, 200, 0–6, doi:10.1051/e3sconf/202020002026. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Ji, Y. ; Zhou, G. ; Luo, T. ; Dan, Y. ; Zhou, L. ; Lv, X. Variation of Net Primary Productivity and Its Drivers in China ’ s Forests during 2000 – 2018. For Ecosyst 2020, 7, 1–11. [CrossRef] [Google Scholar]
  24. Malhi, Y. ; Doughty, C. ; Galbraith, D. The Allocation of Ecosystem Net Primary Productivity in Tropical Forests. Philosophical Transactions of The Royal Society 2011, 366, 3225–3245, doi:10.1098/rstb.2011.0062. [CrossRef] [PubMed] [Google Scholar]
  25. Yang, H. ; Hu, D. ; Xu, H. ; Zhong, X. Assessing the Spatiotemporal Variation of NPP and Its Response to Driving Factors in Anhui Province, China. Environmental Science and Pollution Research 2020, 14915–14932. [Google Scholar]
  26. Wang, X. ; Tan, K. ; Chen, B. ; Du, P. Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China. Sci Rep 2017, 1–10, doi:10.1038/srep44415. [Google Scholar]
  27. Chen, T. ; Huang, Q. ; Liu, M. ; Li, M. ; Qu, L. ; Deng, S. ; Chen, D. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China. Sustainability 2017, 9, 1–17, doi:10.3390/su9020162. [Google Scholar]
  28. Milesi, C. ; Elvidge, C.D. ; Nemani, R.R. ; Running, S.W. Assessing the Impact of Urban Land Development on Net Primary Productivity in the Southeastern United States Assessing the Impact of Urban Land Development on Net Primary Productivity in the Southeastern United States. Remote Sens Environ 2003, 86, 401–410, doi:10.1016/S0034-4257(03)00081-6. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.