Open Access
E3S Web Conf.
Volume 502, 2024
2nd International Congress on Coastal Research (ICCR 2023)
Article Number 02007
Number of page(s) 6
Section Integrated Coastal Zone Management
Published online 11 March 2024
  1. T. Alessandro Verri, “Introductory techniques for 3D computer vision”, Prentice_Hall (1998) [Google Scholar]
  2. R. Billen et al., “3D City Models and urban information: Current issues and perspectives”, European COST Action TU0801, Liège, Belgium, p. I-118, (2014) [Google Scholar]
  3. G. Verhoeven, W. Karel, S. Štuhec, M. Doneus, I. Trinks, and N. Pfeifer, “MIND YOUR GREY TONES - EXAMINING THE INFLUENCE OF DECOLOURIZATION METHODS ON INTEREST POINT EXTRACTION AND MATCHING FOR ARCHITECTURAL IMAGEBASED MODELLING,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-5/W4, pp. 307-314, (2015) [CrossRef] [Google Scholar]
  4. W. Hartmann, M. Havlena, and K. Schindler, “Recent developments in large-scale tie-point matching,” ISPRS J. Photogramm. Remote Sens., vol. 115, pp. 47-62, (2016) [CrossRef] [Google Scholar]
  5. J. L. Schonberger and J.-M. Frahm, “Structure- from-Motion Revisited,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 4104-4113, (2016) [Google Scholar]
  6. F. Remondino, M. G. Spera, E. Nocerino, F. Menna, and F. Nex, “State of the art in high density image matching,” Photogramm. Rec., vol. 29, no. 146, pp. 144-166, (2014) [CrossRef] [Google Scholar]
  7. N. Kassotakis and V. Sarhosis, “Employing noncontact sensing techniques for improving efficiency and automation in numerical modelling of existing masonry structures: A critical literature review,” Structures, vol. 32, pp. 1777-1797, (2021) [CrossRef] [Google Scholar]
  8. R. De Marco and S. Parrinello, “Digital surveying and 3D modelling structural shape pipelines for instability monitoring in historical buildings: a strategy of versatile mesh models for ruined and endangered heritage,” ACTA IMEKO, vol. 10, no. 1, p. 84, (2021) [CrossRef] [Google Scholar]
  9. Y. Verdie, F. Lafarge, and P. Alliez, “LOD Generation for Urban Scenes,” ACM Trans. Graph., vol. 34, no. 3, pp. 1-14, (2015) [CrossRef] [Google Scholar]
  10. H. Arefi, J. Engels, M. Hahn, and H. Mayer, “LEVELS OF DETAIL IN 3D BUILDING RECONSTRUCTION FROM LIDAR DATA,” (2008) [Google Scholar]
  11. F. Biljecki, H. Ledoux, and J. Stoter, “An improved LOD specification for 3D building models,” Comput. Environ. Urban Syst., vol. 59, pp. 25-37, (2016) [CrossRef] [Google Scholar]
  12. E. Grilli, D. Dininno, G. Petrucci, and F. Remondino, “FROM 2D TO 3D SUPERVISED SEGMENTATION AND CLASSIFICATION FOR CULTURAL HERITAGE APPLICATIONS,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-2, pp. 399-406, (2018) [CrossRef] [Google Scholar]
  13. C. Stucker, A. Richard, J. D. Wegner, and K. Schindler, “SUPERVISED OUTLIER DETECTION IN LARGE-SCALE MVS POINT CLOUDS FOR 3D CITY MODELING APPLICATIONS,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. IV-2, pp. 263-270, (2018) [CrossRef] [Google Scholar]
  14. J. Xue, X. Hou, and Y. Zeng, “Review of ImageBased 3D Reconstruction of Building for Automated Construction Progress Monitoring,” Appl. Sci., vol. 11, no. 17, p. 7840, Aug. (2021) [CrossRef] [Google Scholar]
  15. H. Fathi, F. Dai, and M. Lourakis, “Automated as- built 3D reconstruction of civil infrastructure using computer vision: Achievements, opportunities, and challenges,” Adv.Eng. Inform., vol. 29, no. 2, pp. 149-161, (2015) [CrossRef] [Google Scholar]
  16. Hongdong Li and R. Hartley, “Five-Point Motion Estimation Made Easy,” in 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, pp. 630-633, (2006) [Google Scholar]
  17. F. Remondino and S. El-Hakim, “Image-based 3D Modelling: A Review: Image-based 3D modelling: a review,” Photogramm. Rec., vol. 21, no. 115, pp. 269-291, (2006) [CrossRef] [Google Scholar]
  18. B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Adjustment — A Modern Synthesis,” in Vision Algorithms: Theory and Practice, vol. 1883, B. Triggs, A. Zisserman, and R. Szeliski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, (2000) [CrossRef] [Google Scholar]
  19. S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, “Building Rome in a day,” in 2009 IEEE 12th International Conference on Computer Vision, Kyoto, pp. 72-79, (2009) [Google Scholar]
  20. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput.Vis., vol. 60, no. 2, pp. 91-110, (2004) [CrossRef] [Google Scholar]
  21. R. Hartley and A. Zisserman, Multiple view geometry in computer vision, 2nd ed. Cambridge, UK: Cambridge University Press, (2004) [CrossRef] [Google Scholar]
  22. M. A. Fischler and R. C. Bolles, “Random sample consensus,” vol. 24, no. 6, (1981) [Google Scholar]
  23. R. Wang, “3D building modeling using images and LiDAR: a review,” Int. J. Image Data Fusion, vol. 4, no. 4, pp. 273-292, (2013) [CrossRef] [Google Scholar]
  24. Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards Internet-scale multi-view stereo,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 1434-1441, Jun. 2010 [Google Scholar]
  25. J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan, “Image-based Fac, ade Modeling”, Association for Computing Machinery, pp. 1-10, (2008) [Google Scholar]
  26. B. Micusik and J. Kosecka, “Piecewise Planar City 3D Modeling from Street View Panoramic Sequences”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 2906-2912, (2009) [CrossRef] [Google Scholar]
  27. E. K. Stathopoulou, R. Battisti, D. Cernea, A. Georgopoulos, and F. Remondino, “Multiple View Stereo with quadtree-guided priors,” ISPRS J. Photogramm. Remote Sens., vol. 196, pp. 197-209, (2023) [CrossRef] [Google Scholar]
  28. A. Saxena, Min Sun, and A. Y. Ng, “Make3D: Learning 3D Scene Structure from a Single Still Image,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 824-840, (2009) [CrossRef] [PubMed] [Google Scholar]
  29. D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a single image,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, pp. 654-661, (2005) [Google Scholar]
  30. B. G. Pantoja-Rosero, R. Achanta, M. Kozinski, P. Fua, F. Perez-Cruz, and K. Beyer, “Generating LOD3 building models from structure-from motion and semantic segmentation,” Autom. Constr., vol. 141, p. 104430, (2022) [CrossRef] [Google Scholar]
  31. P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van Gool, and W. Purgathofer, “A Survey of Urban Reconstruction” Comput. Graph.Forum, vol. 32, no. 6, pp. 146-177, (2013) [CrossRef] [Google Scholar]
  32. H. Omar, L. Mahdjoubi, and G. Kheder, “Towards an automated photogrammetry-based approach for monitoring and controlling construction site activities,” Comput. Ind., vol. 98, pp. 172-182, (2018) [CrossRef] [Google Scholar]
  33. R. A. Galantucci and F. Fatiguso, “Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis,” J. Cult. Herit., vol. 36, pp. 51-62, (2019) [CrossRef] [Google Scholar]
  34. B. Bortoluzzi, I. Efremov, C. Medina, D. Sobieraj, and J. J. McArthur, “Automating the creation of building information models for existing buildings,” Autom. Constr., vol. 105, p. 102838, (2019) [CrossRef] [Google Scholar]
  35. P. Tang, D. Huber, B. Akinci, R. Lipman, and A. Lytle, “Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques,” Autom. Constr., vol. 19, no. 7, pp. 829-843, (2010) [CrossRef] [Google Scholar]
  36. A. Braun, S. Tuttas, A. Borrmann, U. Stilla. “A Concept for Automated Construction Progress Monitoring Using BIM-Based Geometric Constraints and Photogrammetric Point Clouds.” Journal of Information Technology in Construction 20, pp. 68-79 (January 1, 2015). [Google Scholar]
  37. A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile robots,” Robot. Auton. Syst., vol. 56, no. 11, pp. 915-926, (2008) [CrossRef] [Google Scholar]
  38. Y. Xie, J. Tian, and X. X. Zhu, “Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation,” IEEE Geosci. Remote Sens. Mag., vol. 8, no. 4, pp. 38-59, (2020) [CrossRef] [Google Scholar]
  39. B. Koch, E. Denton, A. Hanna, and J. G. Foster, “Reduced, Reused and Recycled: The Life of a Dataset in Machine Learning Research.” arXiv, (2021) [Google Scholar]
  40. R. Tyleček and R. Šára, “Spatial Pattern Templates for Recognition of Objects with Regular Structure,” in Pattern Recognition, vol. 8142, J. Weickert, M. Hein, and B. Schiele, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, (2013) [Google Scholar]
  41. H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg, and L. Van Gool, “Learning Where to Classify in Multi-view Semantic Segmentation,” in Computer Vision - ECCV 2014, vol. 8693, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, pp. 516-532, (2014) [CrossRef] [Google Scholar]
  42. F. Kor’c, W. Forstner. “eTRIMS Image Database for Interpreting Images of Man-Made Scenes,” Dept. of Photogrammetry, University of Bonn, (2009) [Google Scholar]
  43. A. Nowogrodzki, “Eleven tips for working with large data sets,” Nature, vol. 577, no. 7790, pp. 439–440, (2020) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.