Open Access
Issue |
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 14 | |
Section | Analytical and Environmental Chemistry | |
DOI | https://doi.org/10.1051/e3sconf/202450301003 | |
Published online | 20 March 2024 |
- Xie, W.; Huang, M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management 2018, 159, 42-53, doi: https://doi.org/10.1016/j.enconman.2018.01.021. [CrossRef] [Google Scholar]
- Tielmann, P.; Kierkels, H.; Zonta, A.; Ilie, A.; Reetz, M.T. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest. Nanoscale 2014, 6, 6220-6228, doi: 10.1039/C3NR06317H. [CrossRef] [PubMed] [Google Scholar]
- Barriuso, J.; Vaquero, M.E.; Prieto, A.; Martínez, M.J. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnology Advances 2016, 34, 874-885, doi: https://doi.org/10.1016/j.biotechadv.2016.05.004. [CrossRef] [PubMed] [Google Scholar]
- Subroto, E.; Indiarto, R.; Pangawikan, A.; Huda, S.; Yarlina, V. Characteristics, immobilization, and application of Candida rugosa lipase. Food Research 2020, 4, 1391–1401. [CrossRef] [Google Scholar]
- Vanleeuw, E.; Winderickx, S.; Thevissen, K.; Lagrain, B.; Dusselier, M.; Cammue, B.P.A.; Sels, B.F. Substrate-Specificity of Candida rugosa Lipase and Its Industrial Application. ACS Sustainable Chemistry & Engineering 2019, 7, 15828-15844, doi: 10.1021/acssuschemeng.9b03257. [CrossRef] [Google Scholar]
- Hussin, F.N.N.M.; Attan, N.; Wahab, R.A. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Enzyme and microbial technology 2020, 136, 109506. [CrossRef] [PubMed] [Google Scholar]
- Iuliano, M.; Sarno, M.; De Pasquale, S.; Ponticorvo, E. Candida rugosa lipase for the biodiesel production from renewable sources. Renewable Energy 2020, 162, 124-133, doi: https://doi.org/10.1016/j.renene.2020.08.019. [CrossRef] [Google Scholar]
- Sangkharak, K.; Mhaisawat, S.; Rakkan, T.; Paichid, N.; Yunu, T. Utilization of mixed chicken waste for biodiesel production using single and combination of immobilized lipase as a catalyst. Biomass Conversion and Biorefinery 2022, 12, 1465-1478, doi: 10.1007/s13399-020-00842-7. [CrossRef] [Google Scholar]
- Iuliano, M.; Ponticorvo, E.; Cirillo, C.; Castaldo, R.; De Pasquale, S.; Gentile, G.; Sarno, M. Wax esters from waste fish oil catalysed by immobilized Candida rugosa lipase. Process Biochemistry 2023, 130, 386-400, doi: https://doi.org/10.1016/j.procbio.2023.04.028. [CrossRef] [Google Scholar]
- Rajin, M.; Yaser, A.Z.; Saalah, S.; Jagadeson, Y.; Ibrahim, S.N.; Mislahani, M.S.A. Anaerobic Digestion of Food Waste: The Effect of Candida rugosa Lipase Amount on the Digestive Activity. In Advances in Waste Processing Technology, Yaser, A.Z., Ed.; Springer Singapore: Singapore, 2020; pp. 183-193. [CrossRef] [Google Scholar]
- Zamara, R.A.; Yudhana, L.A.; Curie, C.A.; Gozan, M. Stability and Esterification Activity of Candida rugosa Lipase Immobilized on Celite with Acetone Solvent. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 2023; p. 012038. [CrossRef] [Google Scholar]
- Yudhana, L.A.; Zamara, R.A.; Curie, C.A.; Gozan, M. The effect of ethanol solvent on thermostability and esterification activity of immobilized Candida rugosa lipase on celite. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 2023; p. 012045. [CrossRef] [Google Scholar]
- Ismail, A.R.; Baek, K.-H. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. International Journal of Biological Macromolecules 2020, 163, 1624-1639, doi: https://doi.org/10.1016/j.ijbiomac.2020.09.021. [CrossRef] [PubMed] [Google Scholar]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology 2019, 103, 7399-7423, doi: 10.1007/s00253-019-10027-6. [Google Scholar]
- Facin, B.R.; Melchiors, M.S.; Valério, A.; Oliveira, J.V.; Oliveira, D.D. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Industrial & Engineering Chemistry Research 2019, 58, 5358-5378, doi: 10.1021/acs.iecr.9b00448. [CrossRef] [Google Scholar]
- Meunier, S.M.; Rajabzadeh, A.R.; Williams, T.G.; Legge, R.L. Methyl Oleate Production in a Supported Sol-Gel Immobilized Lipase Packed Bed Reactor. Energy & Fuels 2015, 29, 3168-3175, doi: 10.1021/acs.energyfuels.5b00176. [CrossRef] [Google Scholar]
- Bezbradica, D.I.; Karalazić, I.; Ognjanović, N.; Mijin, D.Ž.; Šiler-Marinković, S., Knežević, Z., Studies on the specificity of Candida rugosa lipase catalyzed esterification reactions in organic media. Journal of the Serbian Chemical Society 2006, 71, 31–41. [CrossRef] [Google Scholar]
- Liu, Y.; Chen, D.; Yan, Y. Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic 2013, 90, 123-127, doi: https://doi.org/10.1016/j.molcatb.2013.01.028. [CrossRef] [Google Scholar]
- Sri Kaja, B.; Lumor, S.; Besong, S.; Taylor, B.; Ozbay, G. Investigating Enzyme Activity of Immobilized Candida rugosa Lipase. Journal of Food Quality 2018, 2018, 1618085, doi: 10.1155/2018/1618085. [Google Scholar]
- Hu, X.; Wang, H.; Liu, Y. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen-Doped Magnetic Graphene Oxide. Scientific Reports 2016, 6, 34378, doi: 10.1038/srep34378. [CrossRef] [PubMed] [Google Scholar]
- Gao, S.; Wang, Y.; Diao, X.; Luo, G.; Dai, Y. Effect of pore diameter and cross linking method on the immobilization efficiency of Candida rugosa lipase in SBA- 15. Bioresource Technology 2010, 101, 3830-3837, doi: https://doi.org/10.1016/j.biortech.2010.01.023. [CrossRef] [PubMed] [Google Scholar]
- Francolini, I.; Taresco, V.; Martinelli, A.; Piozzi, A. Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocomposites. Enzyme and Microbial Technology 2020, 132, 109439, doi: https://doi.org/10.1016/j.enzmictec.2019.109439. [CrossRef] [PubMed] [Google Scholar]
- Bisht, K.S.; Henderson, L.A.; Gross, R.A.; Kaplan, D.L.; Swift, G., Enzyme-Catalyzed Ring-Opening Polymerization of ω-Pentadecalactone. Macromolecules 1997, 30, 2705-2711, doi: 10.1021/ma961869y. [CrossRef] [Google Scholar]
- Hanefeld, U.; Gardossi, L.; Magner, E. Understanding enzyme immobilisation. Chemical Society Reviews 2009, 38, 453-468, doi: 10.1039/B711564B. [CrossRef] [PubMed] [Google Scholar]
- Imanparast, S.; Hamedi, J.; Faramarzi, M.A. Enzymatic esterification of acylglycerols rich in omega-3 from flaxseed oil by an immobilized solvent- tolerant lipase from Actinomadura sediminis UTMC 2870 isolated from oil- contaminated soil. Food Chemistry 2018, 245, 934-942, doi: https://doi.org/10.1016/j.foodchem.2017.11.080. [CrossRef] [PubMed] [Google Scholar]
- Shang, C.-Y.; Li, W.-X.; Jiang, F.; Zhang, R.-F. Improved enzymatic properties of Candida rugosa lipase immobilized on ZnO nanowires/macroporous SiO2 microwave absorbing supports. Journal of Molecular Catalysis B: Enzymatic 2015, 113, 9-13, doi: https://doi.org/10.1016/j.molcatb.2014.12.016. [CrossRef] [Google Scholar]
- Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catalysis 2013, 3, 2823-2836, doi: 10.1021/cs400684x. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.