Open Access
Issue
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 04010
Number of page(s) 15
Section Design Process and Chemical Engineering
DOI https://doi.org/10.1051/e3sconf/202450304010
Published online 20 March 2024
  1. Al-Saadi, A., Mathan, B., & He, Y. (2020). Biodiesel production via simultaneous transesterification and esterification reactions over SrO-ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chemical Engineering Research and Design, 162, 238-248. https://doi.org/10.1016/j.cherd.2020.08.018 [CrossRef] [Google Scholar]
  2. ASTM D975. (2002). ASTM-D975 Standard Specification for Diesel Fuels Oils. ASTM International. [Google Scholar]
  3. Barabás, I., & Todoruţ, I.-A. (2011). Biodiesel Quality, Standards and Properties. www.intechopen.com [Google Scholar]
  4. Ben-Youssef, C., Chávez-Yam, A., Zepeda, A., Rivera, J. M., & Rincón, S. (2021). Simultaneous esterification/transesterification of waste cooking oil and Jatropha curcas oil with MOF-5 as a heterogeneous acid catalyst. International Journal of Environmental Science and Technology, 18(11), 3313-3326. https://doi.org/10.1007/s13762-020-03088-y [CrossRef] [Google Scholar]
  5. Gravalos, I., Gialamas, T., Koutsofitis, Z., Kateris, D., Tsiropoulos, Z., Xyradakis, P., & Georgiades, A. (2008). Energetic Study on Animal Fats and Vegetable Oils Using Combustion Bomb Calorimeter. Journal ofAgricultural Machinery Science, 4(1), 69–74. [Google Scholar]
  6. Kumar, V., Das, D., & Mahto, V. K. (2023). A kinetic study and thermometric analysis on waste cooking oil. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04254-1 [Google Scholar]
  7. Lugo-Méndez, H., Sánchez-Domínguez, M., Sales-Cruz, M., Olivares-Hernández, R., Lugo-Leyte, R., & Torres-Aldaco, A. (2021). Synthesis of biodiesel from coconut oil and characterization of its blends. Fuel, 295. https://doi.org/10.1016Zj.fuel.2021.120595 [Google Scholar]
  8. Lukic, I., Kesic, Z., Zdujic, M., & Skala, D. (2023). Adsorptive pretreatment of waste cooking oil using quicklime for fatty acid methyl esters synthesis. Hemijska Industrija, 77(1), 69-84. https://doi.org/10.2298/hemind220628005l [CrossRef] [Google Scholar]
  9. Mazubert, A., Poux, M., & Aubin, J. (2013). Intensified processes for FAME production from waste cooking oil: A technological review. In Chemical Engineering Journal (Vol. 233, pp. 201-223). https://doi.org/10.1016/j.cej.2013.07.063 [Google Scholar]
  10. Meng, J., Xu, W., Meng, F., Wang, B., Zhao, P., Wang, Z., Ji, H., & Yang, Y. (2023). Effects of waste cooking oil biodiesel addition on combustion, regulated and unregulated emission characteristics of common-rail diesel engine. Process Safety and Environmental Protection, 178, 1094-1106. https://doi.Org/10.1016/j.psep.2023.08.065 [CrossRef] [Google Scholar]
  11. Monika, Banga, S., & Pathak, V. V. (2023). Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus, 10, 100209. https://doi.Org/10.1016/j.nexus.2023.100209 [CrossRef] [Google Scholar]
  12. Muralidharan, K., & Vasudevan, D. (2011). Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Applied Energy, 88(11), 3959-3968. https://doi.org/10.1016/j.apenergy.2011.04.014 [Google Scholar]
  13. Okoro, L. N., Belaboh, S. V., Edoye, N. R., & Makama, B. Y. (2011). Synthesis, Calorimetric and Viscometric Study of Groundnut oil Biodiesel and Blends. In J. Chem. Sci. Research Journal of Chemical Sciences (Vol. 1, Issue 3). www.isca.in [Google Scholar]
  14. Oo, Y. M., Prateepchaikul, G., & Somnuk, K. (2021). Two-stage continuous production process for fatty acid methyl ester from high FFA crude palm oil using rotor-stator hydrocavitation. Ultrasonics Sonochemistry, 73. https://doi.org/10.1016/j.ultsonch.2021.105529 [Google Scholar]
  15. Qiu, F., Li, Y., Yang, D., Li, X., & Sun, P. (2011). Biodiesel production from mixed soybean oil and rapeseed oil. Applied Energy, 88(6), 2050-2055. https://doi.org/10.1016/j.apenergy.2010.12.070 [Google Scholar]
  16. Rattanaphra, D., Temrak, A., Nuchdang, S., Kingkam, W., Puripunyavanich, V., Thanapimmetha, A., Saisriyoot, M., & Srinophakun, P. (2021). Catalytic behavior of La2O3-promoted SO42- /ZrO2 in the simultaneous esterification and transesterification of palm oil. Energy Reports, 7, 5374-5385. https://doi.org/10.1016/j.egyr.2021.08.166 [CrossRef] [Google Scholar]
  17. Rocha-Meneses, L., Hari, A., Inayat, A., Yousef, L. A., Alarab, S., Abdallah, M., Shanableh, A., Ghenai, C., Shanmugam, S., & Kikas, T. (2023). Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production. Fuel, 348. https://doi.org/10.1016Z1.fuel.2023.128514 [Google Scholar]
  18. Sánchez Faba, E. M., Ferrero, G. O., Dias, J. M., & Eimer, G. A. (2020). Na-Ce- modified-SBA-15 as an effective and reusable bimetallic mesoporous catalyst for the sustainable production of biodiesel. Applied Catalysis A: General, 604. https://doi.org/10.1016/j.apcata.2020.117769 [Google Scholar]
  19. Santhoshkumar, A., Thangarasu, V., & Anand, R. (2019). Performance, combustion, and emission characteristics of DI diesel engine using mahua biodiesel. In Advanced Biofuels: Applications, Technologies and Environmental Sustainability (pp. 291-327). Elsevier. https://doi.org/10.1016/B978-0-08-102791-2.00012-X [Google Scholar]
  20. Shatesh Kumar, Shamsuddin, M. R., Farabi, M. S. A., Saiman, M. I., Zainal, Z., & Taufiq-Yap, Y. H. (2020). Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Conversion and Management, 226. https://doi.org/10.1016/j.enconman.2020.113366 [Google Scholar]
  21. Tarangan, D., Sobati, M. A., Shahnazari, S., & Ghobadian, B. (2023). Physical properties, engine performance, and exhaust emissions of waste fish oil biodiesel/bioethanol/diesel fuel blends. Scientific Reports, 13(1), 14024. https://doi.org/10.1038/s41598-023-41280-5 [CrossRef] [PubMed] [Google Scholar]
  22. Van Gerpen, J., Knothe, G., Haas, M. J., Schultz, A. K., Banavali, R., Topp, K. D., & Vandersall, M. T. (2010). Biodiesel Production. In The Biodiesel Handbook: Second Edition (pp. 31-96). Elsevier Inc. https://doi.org/10.1016/B978-1-893997-62-2.50009-7 [Google Scholar]
  23. Yustira, Y., & Usman, T. (2018). REACTION OF TRANSESTERIFICATIONESTERIFICATION OF PALM OIL SIMULTANS WITH ZEOLIT IMMEDIATED Sn AND PEFB. In Orbital (Vol. 3, Issue 1). http://jumal.untan.ac.id/index.php/jp [Google Scholar]
  24. Yusuff, A. S., Dada, T., Olateju, I. I., Azeez, T. M., & Azeez, S. O. (2023). Experimental investigation of influence of methyl, ethyl and methyl-ethyl ester blends of used cooking oil on engine performances and emissions. Energy Conversion and Management: X., 17. https://doi.org/10.1016/j.ecmx.202 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.