Open Access
Issue
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 05002
Number of page(s) 14
Section Food Chemistry and Processing
DOI https://doi.org/10.1051/e3sconf/202450305002
Published online 20 March 2024
  1. S. Moegiarso, “Pemerintah Dorong Peningkatan Produksi Jagung Nasional, Melalui Intensifikasi dan Ekstensifikasi, Khususnya Perluasan Lahan Baru, Untuk Memenuhi Kebutuhan Nasional dan Ekspor,” Kementeri. Koord. Bid. Perekon. Republik Indones., 2022. [Google Scholar]
  2. P. Polthum and A. Ahromrit, “GABA content and Antioxidant activity of Thai waxy corn seeds germinated by hypoxia method.,” Songklanakarin J. Sci. Technol., vol. 36, no. 3, 2014. [Google Scholar]
  3. A. k Singh, J. Rehal, A. Kaur, and G. Jyot, “Enhancement of attributes of cereals by germination and fermentation: A review,” Crit. Rev. Food Sci. Nutr., vol. 55, no. 11, pp. 1575–1589, 2015. [CrossRef] [PubMed] [Google Scholar]
  4. F. Wu, N. Yang, A. Touré, Z. Jin, and X. Xu, “Germinated brown rice and its role in human health,” Crit. Rev. FoodSci. Nutr., vol. 53, no. 5, pp. 451–463, 2013. [CrossRef] [PubMed] [Google Scholar]
  5. C. Acquah, G. Ohemeng-Boahen, K. A. Power, and S. M. Tosh, “The effect of processing on bioactive compounds and nutritional qualities of pulses in meeting the sustainable development goal 2,” Front. Sustain. FoodSyst., vol. 5, p. 681662, 2021. [CrossRef] [Google Scholar]
  6. I. O. Owolabi, K. Chakree, and C. Takahashi Yupanqui, “Bioactive components, antioxidative and anti-inflammatory properties (on RAW 264.7 macrophage cells) of soaked and germinated purple rice extracts,” Int. J. Food Sci. Technol., vol. 54, no. 7, pp. 2374–2386, 2019. [CrossRef] [Google Scholar]
  7. L. M. Paucar-Menacho, C. Martinez-Villaluenga, M. Dueñas, J. Frias, and E. Peñas, “Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology,” LWT-Food Sci. Technol., vol. 76, pp. 236–244, 2017. [CrossRef] [Google Scholar]
  8. F. Shahidi and Y. Zhong, “Measurement of antioxidant activity,” J. Funct. Foods, vol. 18, pp. 757–781, 2015. [CrossRef] [Google Scholar]
  9. J. Dai and R. J. Mumper, “Plant phenolics: extraction, analysis and their antioxidant and anticancer properties,” Molecules, vol. 15, no. 10, pp. 7313–7352, 2010. [CrossRef] [PubMed] [Google Scholar]
  10. H. Cory, S. Passarelli, J. Szeto, M. Tamez, and J. Mattei, “The role of polyphenols in human health and food systems: A mini-review,” Front. Nutr., vol. 5, p. 87, 2018. [CrossRef] [Google Scholar]
  11. T. Kawakatsu, S. Hirose, H. Yasuda, and F. Takaiwa, “Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation,” Plant Physiol., vol. 154, no. 4, pp. 1842–1854, 2010. [CrossRef] [Google Scholar]
  12. N. Nikmaram et al., “Recent advances in γ-aminobutyric acid (GABA) properties in pulses: An overview,” J. Sci. Food Agric., vol. 97, no. 9, pp. 2681–2689, 2017. [CrossRef] [PubMed] [Google Scholar]
  13. D. Rashmi, R. Zanan, S. John, K. Khandagale, and A. Nadaf, “γ-aminobutyric acid (GABA): Biosynthesis, role, commercial production, and applications,” Stud. Nat. Prod. Chem., vol. 57, pp. 413–452, 2018. [CrossRef] [Google Scholar]
  14. T. Limure, M. Kihara, N. Hirota, T. Zhou, K. Hayashi, and K. Ito, “A method for production of γ-amino butyric acid (GABA) using barley bran supplemented with glutamate,” Food Res. Int., vol. 42, no. 3, pp. 319–323, 2009. [CrossRef] [Google Scholar]
  15. N. Komatsuzaki, K. Tsukahara, H. Toyoshima, T. Suzuki, N. Shimizu, and T. Kimura, “Effect of soaking and gaseous treatment on GABA content in germinated brown rice,” J. Food Eng., vol. 78, no. 2, pp. 556–560, 2007. [CrossRef] [Google Scholar]
  16. J. Banchuen, P. Thammarutwasik, B. Ooraikul, P. Wuttijumnong, and P. Sirivongpaisal, “Increasing the bio-active compounds contents by optimizing the germination conditions of Southern Thai Brown Rice.,” Songklanakarin J. Sci. Technol., vol. 32, no. 3, 2010. [Google Scholar]
  17. W.-C. Liao, C.-Y. Wang, Y.-T. Shyu, R.-C. Yu, and K.-C. Ho, “Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria,” J. Funct. Foods, vol. 5, no. 3, pp. 1108–1115, 2013. [CrossRef] [Google Scholar]
  18. C. Delgado-Andrade, J. A. Rufián-Henares, and F. J. Morales, “Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods,” J. Agric. Food Chem., 2005, doi: 10.1021/jf0512353. [Google Scholar]
  19. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods Enzymol., 1999, doi: 10.1016/S0076-6879(99)99017-1. [Google Scholar]
  20. Y. R. Cho, J. Y. Chang, and H. C. Chang, “Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells.,” J. Microbiol. Biotechnol., vol. 17, no. 1, pp. 104–109, 2007. [Google Scholar]
  21. M. Rezaei, A. Sharifan, and H. Bakhoda, “Producing and analyzing gamma - aminobutyric acid containing probiotic black grape juice using Lactobacillus plantarum plantarum IBRC (10817) and Lactobacillus brevis IBRC (10818),” Meas. Food, vol. 8, p. 100056, 2022. [CrossRef] [Google Scholar]
  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent.,” J. Biol. Chem., 1951. [Google Scholar]
  23. A. S. Ali and A. A. Elozeiri, “Metabolic processes during seed germination,” Adv. seed Biol., vol. 2017, pp. 141–166, 2017. [Google Scholar]
  24. Q. Bai, G. Fan, Z. Gu, X. Cao, and F. Gu, “Effects of culture conditions on γ- aminobutyric acid accumulation during germination of foxtail millet (Setaria italica L.),” Eur. Food Res. Technol., vol. 228, pp. 169–175, 2008. [CrossRef] [Google Scholar]
  25. B. Sritongtae, T. Sangsukiam, M. R. A. Morgan, and K. Duangmal, “Effect of acid pretreatment and the germination period on the composition and antioxidant activity of rice bean (Vigna umbellata),” Food Chem., vol. 227, pp. 280–288, 2017. [CrossRef] [Google Scholar]
  26. M. Asghari, D. E. Asli, M. Y. Rad, and M. G. Zanjan, “The effect of pyridoxine and its duration application on bioactive compounds and biochemical activities of germinated wheat.,” Ann. Biol. Res., vol. 4, no. 3, pp. 31–36, 2013. [Google Scholar]
  27. A. M. Hamada and E. M. Khulaef, “Stimulative effects of ascorbic acid, thiamin or pyridoxine on Vicia faba growth and some related matabolic activities,” Pakistan J. Biol. Sci., 2000. [Google Scholar]
  28. Q. Zhang et al., “Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing,” J. Biosci. Bioeng., vol. 129, no. 4, pp. 447–453, 2020. [CrossRef] [Google Scholar]
  29. P. J. Cáceres, C. Martínez-Villaluenga, L. Amigo, and J. Frias, “Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions,” Food Chem., vol. 152, pp. 407–414, 2014. [CrossRef] [Google Scholar]
  30. K. Phattayakorn, P. Pajanyor, S. Wongtecha, A. Prommakool, and W. Saveboworn, “Effect of germination on total phenolic content and antioxidant properties of’Hang’rice,” Int. Food Res. J., vol. 23, no. 1, p. 406, 2016. [Google Scholar]
  31. M. Duenas, T. Hernandez, I. Estrella, and D. Fernandez, “Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.),” Food Chem., vol. 117, no. 4, pp. 599–607, 2009. [CrossRef] [Google Scholar]
  32. M. E. El-Awadi, Y. R. Abd Elbaky, M. G. Dawood, M. A. Shalaby, and B. A. Bakry, “Enhancement quality and quantity of lupine plant via foliar application of some vitamins under sandy soil conditions,” Res. J. Pharm. Biol. Chem. Sci., vol. 7, no. 4, pp. 1012–1024, 2016. [Google Scholar]
  33. Y. Aguilera et al., “Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes,” J. Agric. Food Chem., vol. 61, no. 34, pp. 8120–8125, 2013. [CrossRef] [PubMed] [Google Scholar]
  34. A. A. Fouad and F. M. Rehab, “Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts,” Acta Sci. Pol. Technol. Aliment., vol. 14, no. 3, pp. 233–246, 2015. [CrossRef] [Google Scholar]
  35. Q. Hu and J. Xu, “Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation,” J. Agric. Food Chem., vol. 59, no. 5, pp. 2026–2033, 2011. [CrossRef] [PubMed] [Google Scholar]
  36. A. Dolatabadian and S. A. M. M. Sanavy, “Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds,” Not. Bot. Horti Agrobot. Cluj-Napoca, vol. 36, no. 2, pp. 61–66, 2008. [Google Scholar]
  37. H. A. Oketch-Rabah, E. F. Madden, A. L. Roe, and J. M. Betz, “United States Pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA),” Nutrients, vol. 13, no. 8, p. 2742, 2021. [CrossRef] [PubMed] [Google Scholar]
  38. X. Jiang et al., “Optimization of γ-aminobutyric acid (GABA) accumulation in germinating adzuki beans (Vigna angularis) by vacuum treatment and monosodium glutamate, and the molecular mechanisms,” Front. Nutr., vol. 8, p. 693862, 2021. [CrossRef] [Google Scholar]
  39. T. B. Fitzpatrick, “Vitamin B6 in plants: more than meets the eye,” in Advances in botanical research, vol. 59, Elsevier, 2011, pp. 1-38. [CrossRef] [Google Scholar]
  40. M. C. Beltrán-Orozco, A. Martínez-Olguín, and M. C. del Robles-Ramírez, “Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process,” FoodSci. Biotechnol., vol. 29, pp. 751–757, 2020. [CrossRef] [PubMed] [Google Scholar]
  41. A. A. El-Refai, A. M. El-Bastawesy, and E. S. El-Ashaal, “Effect of germination process on the chemical and biological active compounds of barley and oat grains,” J. Food Dairy Sci., vol. 3, no. 10, pp. 553–564, 2012. [CrossRef] [Google Scholar]
  42. E. Kuznetsova, E. Klimova, T. Bychkova, V. Zomitev, S. Motyleva, and J. Brindza, “ALTERATION OF BIOCHEMICAL PARAMETERS AND MICROSTRUCTURE OF FAGOPYRUM ESCULENTUM MOENCH GRAIN IN PROCESS OF GERMINATION.,” Potravinarstvo, vol. 12, no. 1, 2018. [Google Scholar]
  43. F. Li et al., “Embryo development and corresponding factors affecting in vitro germination of Cymbidium faberi× C. sinense hybrid seeds,” Arch. Biol. Sci., vol. 68, no. 3, pp. 541–550, 2016. [Google Scholar]
  44. H. Wang, K. Zhao, X. Li, X. Chen, W. Liu, and J. Wang, “Factors affecting seed germination and emergence of Aegilops tauschii,” Weed Res., vol. 60, no. 3, pp. 171-181, 2020. [CrossRef] [Google Scholar]
  45. R. Amalia, T. Nurhidayati, and S. Nurfadilah, “Pengaruh jenis dan konsentrasi vitamin terhadap pertumbuhan dan perkembangan biji Dendrobium laxiflorum JJ Smith secara in vitro,” J. Sains dan Seni ITS, vol. 2, no. 1, pp. E20–E25, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.