Open Access
Issue
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 05004
Number of page(s) 10
Section Food Chemistry and Processing
DOI https://doi.org/10.1051/e3sconf/202450305004
Published online 20 March 2024
  1. H. N. A. C. Viana, W. G. Sganzerla, L. E. N. Castro, and A. P. L. de Veeck, “Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial byproduct in the formulation of cookies,” J. Agric. Food Res., vol. 12, no. February, p. 100577, 2023, doi: 10.1016/j.jafr.2023.100577. [Google Scholar]
  2. J. N. Semporé, L. T. Songré-Ouattara, W. V. Tarpaga, F. Bationo, and M. H. Dicko, “Morphological characterization and quality assessment of cashew (Anacardium occidentale L.) nuts from 53 accessions of Burkina Faso,” J. Agric. Food Res., vol. 6, no. September, pp. 0–7, 2021, doi: 10.1016/j.jafr.2021.100219. [Google Scholar]
  3. L. J. Cruz-Reina, J. S. Flórez-Rojas, G. D. López, I. Herrera-Orozco, C. Carazzone, and R. Sierra, “Obtention of fatty acids and phenolic compounds from Colombian cashew (Anacardium occidentale) nut shells using pyrolysis: towards a sustainable biodiesel production,” Heliyon, vol. 9, no. 8, 2023, doi: 10.1016/j.heliyon.2023.e18632. [Google Scholar]
  4. L. J. Cruz Reina et al., “Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties,” Heliyon, vol. 8, no. 5, 2022, doi: 10.1016/j.heliyon.2022.e09528. [CrossRef] [PubMed] [Google Scholar]
  5. P. Sruthi and M. M. Naidu, “Cashew nut (Anacardium occidentale L.) testa as a potential source of bioactive compounds: A review on its functional properties and valorization,” Food Chem. Adv., vol. 3, no. July, p. 100390, 2023, doi: 10.1016/j.focha.2023.100390. [CrossRef] [Google Scholar]
  6. P. Sruthi, C. Roopavathi, and M. Madhava Naidu, “Profiling of phenolics in cashew nut (Anacardium occidentale L.) testa and evaluation of their antioxidant and antimicrobial properties,” Food Biosci., vol. 51, no. November 2022, p. 102246, 2023, doi: 10.1016/j.fbio.2022.102246. [CrossRef] [Google Scholar]
  7. M. Yuliana, N. Y. Tran-Thi, and Y. H. Ju, “Effect of extraction methods on characteristic and composition of Indonesian cashew nut shell liquid,” Ind. Crops Prod., vol. 35, no. 1, pp. 230–236, 2012, doi: 10.1016/j.indcrop.2011.07.007. [CrossRef] [Google Scholar]
  8. D. Araújo et al., “Effect of technical cashew nut shell liquid on growth, physicochemical and fatty acid composition of lamb meat,” Small Rumin. Res., vol. 227, no. June, 2023, doi: 10.1016/j.smallrumres.2023.107070. [Google Scholar]
  9. K. R. Polley, F. Kamal, C. M. Paton, and J. A. Cooper, “Appetite responses to high-fat diets rich in mono-unsaturated versus poly-unsaturated fats,” Appetite, vol. 134, no. December 2018, pp. 172-181, 2019, doi: 10.1016/j.appet.2018.12.008. [Google Scholar]
  10. N. Uslu and M. M. Özcan, “Effect of microwave heating on phenolic compounds and fatty acid composition of cashew (Anacardium occidentale) nut and oil,” J. Saudi Soc. Agric. Sci., vol. 18, no. 3, pp. 344–347, 2019, doi: 10.1016/j.jssas.2017.10.001. [Google Scholar]
  11. A. R. Leal et al., “Impact of different kernel grades on volatile compounds profile, fatty acids and oxidative quality of cashew nut oil,” Food Res. Int., vol. 165, no. January, 2023, doi: 10.1016/j.foodres.2023.112526. [Google Scholar]
  12. M. Zié, T. Alabi, G. Karamoko, and C. Blecker, “Valorization of cashew apple bagasse in food application: Focus on the use and extraction of nutritional or bioactive compounds,” Food Humanit., vol. 1, no. June, pp. 848–863, 2023, doi: 10.1016/j.foohum.2023.08.002. [CrossRef] [Google Scholar]
  13. E. M. Comak Gocer and E. Koptagel, “Production of milks and kefir beverages from nuts and certain physicochemical analysis,” Food Chem., vol. 402, no. April 2022, p. 134252, 2023, doi: 10.1016/j.foodchem.2022.134252. [CrossRef] [Google Scholar]
  14. E. Mah et al., “Cashew consumption reduces total and LDL cholesterol: A randomized, crossover, controlled-feeding trial,” Am. J. Clin. Nutr., vol. 105, no. 5, pp. 1070–1078, 2017, doi: 10.3945/ajcn.116.150037. [Google Scholar]
  15. S. K. Kyei, W. I. Eke, R. D. Nagre, I. Mensah, and O. Akaranta, “A comprehensive review on waste valorization of cashew nutshell liquid: Sustainable development and industrial applications,” Clean. Waste Syst., vol. 6, no. August, p. 100116, 2023, doi: 10.1016/j.clwas.2023.100116. [CrossRef] [Google Scholar]
  16. S. F. Akomolafe and A. M. Asowata-Ayodele, “Roasted cashew (Anacardium occidentale L.) nut-enhanced diet forestalls cisplatin-initiated brain harm in rats,” Heliyon, vol. 8, no. 10, p. e11066, 2022, doi: 10.1016/j.heliyon.2022.e11066. [CrossRef] [PubMed] [Google Scholar]
  17. J. K. Akintunde et al., “Antihypertensive activity of roasted cashew nut in mixed petroleum fractions-induced hypertension: An in vivo and in silico approaches,” Heliyon, vol. 8, no. 12, p. e12339, 2022, doi: 10.1016/j.heliyon.2022.e12339. [CrossRef] [PubMed] [Google Scholar]
  18. E. Ervina, “The sensory profiles and preferences of gluten-free cookies made from alternative flours sourced from Indonesia,” Int. J. Gastron. Food Sci., vol. 33, no. August, p. 100796, 2023, doi: 10.1016/j.ijgfs.2023.100796. [CrossRef] [Google Scholar]
  19. K. Nishinari et al., “The role of texture in the palatability and food oral processing,” Food Hydrocoll., p. 109095, 2023, doi: 10.1016/j.foodhyd.2023.109095. [Google Scholar]
  20. C. Varghese, P. P. Srivastav, and M. S. Roopesh, “High-energy cookies for undernourished adolescents: In vivo rat assay of protein quality and evaluation of storage conditions on cookies shelf-life,” Futur. Foods, vol. 6, no. May, p. 100154, 2022, doi: 10.1016/j.fufo.2022.100154. [CrossRef] [Google Scholar]
  21. F. Ge et al., “Toward a comprehensive understanding of various milling methods on the physicochemical properties of highland barley flours and eating quality of corresponding sugar-free cookies,” Food Chem., vol. 413, no. January, 2023, doi: 10.1016/j.foodchem.2023.135657. [Google Scholar]
  22. Y. Chen, Y. Wu, J. Fu, and Q. Fan, “Comparison of different rice flour- and wheat flourbased butter cookies for acrylamide formation,” J. Cereal Sci., vol. 95, no. May, p. 103086, 2020, doi: 10.1016/j.jcs.2020.103086. [CrossRef] [Google Scholar]
  23. S. Jeong, G. Kim, K. Ryu, J. Park, and S. Lee, “Effect of different sweeteners on the thermal, rheological, and water mobility properties of soft wheat flour and their application to cookies as an alternative to sugar,” Food Chem., vol. 432, no. August 2023, p. 137193, 2024, doi: 10.1016/j.foodchem.2023.137193. [CrossRef] [Google Scholar]
  24. F. Arifan, S. Winarni, Wahyuningsih, I. Pudjihastuti, and R. T. D. Wisnu Broto, “Functional beverage instant ginger powder (zingiber officinale) with addition of betel extraction (piper bettle),” IOP Conf. Ser. Mater. Sci. Eng., vol. 845, no. 1, 2020, doi: 10.1088/1757-899X/845/1/012038. [CrossRef] [Google Scholar]
  25. M. Zainuri, H. Endrawati, S. Winarni, F. Arifan, A. Setyawan, and H. P. Hapsari, “Analysis total plate count (tpc) and organoleptic test on seaweed chips,” J. Phys. Conf. Ser., vol. 1524, no. 1, 2020, doi: 10.1088/1742-6596/1524/1/012056. [CrossRef] [Google Scholar]
  26. S. Winarni, F. Arifan, R. T. D. Wisnu Broto, A. Fuadi, and L. Alviche, “Nira acidity and antioxidant activity of Palm sugar in Sumowono Village,” J. Phys. Conf. Ser., vol. 1025, no. 1, pp. 10–14, 2018, doi: 10.1088/1742-6596/1025/1/012052. [CrossRef] [Google Scholar]
  27. A. Ari Anggraeni, P. Triwitono, L. Arsanti Lestari, and E. Harmayani, “Evaluation of glucomannan as a fat replacer in the dough and cookies made from fermented cassava flour and soy protein concentrate,” Food Chem., vol. 434, no. September 2023, p. 137452, 2023, doi: 10.1016/j.foodchem.2023.137452. [Google Scholar]
  28. S. Mubanga, T. Seyoum, G. Bultosa, B. Adegbemiro, and M. Siwela, “Food Bioscience Dough rheology and loaf quality of wheat-cassava bread using di ff erent cassava varieties and wheat substitution levels,” Food Biosci., vol. 34, no. November 2018, p. 100529, 2020, doi: 10.1016/j.fbio.2020.100529. [CrossRef] [Google Scholar]
  29. S. Susanti, H. Rizqiati, Y. Pratama, F. Arifan, and S. P. Reza, “Characteristics of Bromelain enzyme from Queen variety pineapple crown at different drying temperatures,” IOP Conf. Ser. Earth Environ. Sci., vol. 977, no. 1, 2022, doi: 10.1088/1755-1315/977/1/012029. [CrossRef] [Google Scholar]
  30. S. Reza, Y. Maghsoudlou, M. Aalami, and S. Mahdi, “Application of multi-criteria decision-making for optimizing the formulation of functional cookies containing different types of resistant starches: A physicochemical, organoleptic, in-vitro and in- vivo study,” Food Chem., vol. 393, no. May, p. 133376, 2022, doi: 10.1016/j.foodchem.2022.133376. [CrossRef] [Google Scholar]
  31. F. Arifan, W. Broto, E. Supriyo, M. M. Faisal, O. K. Wardani, and E. F. Sapatra, “Characterization of Physical and Chemical Properties of Functional Beverages of Robusta Coffee Leaf Herbal Tea With Red Ginger-Enriched Green Tea Technique,” Mater. Today Proc., vol. 87, pp. 350–354, 2023, doi: 10.1016/j.matpr.2023.03.622. [CrossRef] [Google Scholar]
  32. I. Alibas, A. Yilmaz, and B. B. Asik, “Journal of Food Composition and Analysis Influence of drying methods on the nutrients, protein content and vitamin profile of basil leaves,” vol. 96, no. November 2020, 2021, doi: 10.1016/j.jfca.2020.103758. [Google Scholar]
  33. R. A. Okoth, J. W. Matofari, and J. M. Nduko, “Effectiveness of Levilactobacillus brevis fermentation on antinutrients and protein quality of leaves of selected cassava varieties,” Appl. Food Res., vol. 2, no. 2, p. 100134, 2022, doi: 10.1016/j.afres.2022.100134. [Google Scholar]
  34. J. Han, J. Fitzpatrick, K. Cronin, V. Maidannyk, and S. Miao, “Breakage behaviour and functionality of spray-dried agglomerated model infant milk formula: Effect of proteins and carbohydrates content,” Food Chem., vol. 391, no. December 2021, p. 133179, 2022, doi: 10.1016/j.foodchem.2022.133179. [CrossRef] [Google Scholar]
  35. S. Banerjee, S. Haldar, N. Reddy, R. Reddy, and G. S. Nagananda, “Under-utilized germinated horse gram (Macrotyloma uniflorum) protein - Extraction, process optimization, characterization and its use in cookies fortification,” LWT, vol. 160, no. September 2021, p. 113276, 2022, doi: 10.1016/j.lwt.2022.113276. [CrossRef] [Google Scholar]
  36. B. Olawoye, S. O. Gbadamosi, I. O. Otemuyiwa, and C. T. Akanbi, “Heliyon Gluten - free cookies with low glycemic index and glycemic load: optimization of the process variables via response surface methodology and arti fi cial neural network,” Heliyon, vol. 6, no. September, p. e05117, 2020, doi: 10.1016/j.heliyon.2020.e05117. [CrossRef] [PubMed] [Google Scholar]
  37. P. Tyagi and A. K. Chauhan, “LWT - Food Science and Technology Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants,” LWT - Food Sci. Technol., vol. 130, no. May, p. 109639, 2020, doi: 10.1016/j.lwt.2020.109639. [CrossRef] [Google Scholar]
  38. H. Rizqiati, A. Nugraheni, S. Susanti, L. Fatmawati, N. Nuryanto, and F. Arifan, “Characteristic of isolated crude bromelain extract from cayenne pineapple crown in various drying temperature and its effect on meat texture,” Food Res., vol. 5, no. 5, pp. 72–78, 2021, doi: 10.26656/fr.2017.5(5).692. [CrossRef] [Google Scholar]
  39. F. Arifan, H. Rizqiati, A. Hintono, N. Nurwantoro, S. Susanti, and L. N. Sulistiyani, “Effect of Sugar Substitution with Dates Puree (Phoenix dactylifera L.) on the Physical and Organoleptic Characteristics of Kefir Ice Cream,” J. Ilmu dan Teknol. Has. Ternak, vol. 16, no. 1, pp. 21–31, 2021, doi: 10.21776/ub.jitek.2021.016.01.3. [CrossRef] [Google Scholar]
  40. S. Suryanti, S. R. Sari, I. Setiono, F. Arifan, and R. W. Broto, “Design and Study of Spinner Machine Peformance through Simulation and Proximate Analysis of Sepakung Village-Speciality Pegagan Leaf (Centella asiatica) Chips,” vol. 167, no. IComA 2018, pp. 396-398, 2019, doi: 10.2991/icoma-18.2019.85. [Google Scholar]
  41. C. Le Bourgot et al., “Development of a protein food based on texturized wheat proteins, with high protein digestibility and improved lysine content,” Food Res. Int., vol. 170, no. May, pp. 0–7, 2023, doi: 10.1016/j.foodres.2023.112978. [CrossRef] [Google Scholar]
  42. H. N. A. C. Viana, W. G. Sganzerla, L. E. N. Castro, and A. P. L. de Veeck, “Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial byproduct in the formulation of cookies,” J. Agric. Food Res., vol. 12, no. March, p. 100577, 2023, doi: 10.1016/j.jafr.2023.100577. [Google Scholar]
  43. P. Sharma, V. K. Gaur, R. Sirohi, C. Larroche, S. H. Kim, and A. Pandey, “Valorization of cashew nut processing residues for industrial applications,” Ind. Crops Prod., vol. 152, no. January, p. 112550, 2020, doi: 10.1016/j.indcrop.2020.112550. [CrossRef] [Google Scholar]
  44. Y. Lao, Q. Ye, Y. Wang, J. Vongsvivut, and C. Selomulya, “Quantifying the effects of pre-roasting on structural and functional properties of yellow pea proteins,” Food Res. Int., vol. 172, no. April, p. 113180, 2023, doi: 10.1016/j.foodres.2023.113180. [CrossRef] [Google Scholar]
  45. A. Wang, Y. Zhu, L. Zou, G. Zhao, and J. Wu, “Development of protein-enriched biscuit based on oat-milk byproduct fortified with chickpea flour,” Lwt, vol. 177, no. January, p. 114594, 2023, doi: 10.1016/j.lwt.2023.114594. [CrossRef] [Google Scholar]
  46. D. D. Ratnasari, N. Rustanti, F. Arifan, Afifah, “The Effects of Treatments on Batu Banana Flour and Percentage of Wheat Substitution on The Resistant Starch, In Vitro Starch Digestibility Content and Palatability of Cookies Made with Banana (Musa balbisiana Colla) Flour The Effects of Treatments on B,” 2018, doi: 10.1088/1755-1315/116/1/012003. [Google Scholar]
  47. K. E. and A. R. Broto R T D W., F. Arifan, Setyati, W. A. Zein, “Crackers from Fresh Water Snail (Pila ampullacea) Waste as Alternative Nutritious Food Crackers from Fresh Water Snail (Pila ampullacea) Waste as Alternative Nutritious Food,” 2020, doi: 10.1088/1755-1315/448/1/012039. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.