Open Access
Issue
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 06006
Number of page(s) 12
Section Materials Chemistry and Catalysis
DOI https://doi.org/10.1051/e3sconf/202450306006
Published online 20 March 2024
  1. T. R. Kothawade and S. J. Naik, ‘Reuse of produced water as injection water’, Mater Today Proc, vol. 77, pp. 168–175, Jan. 2023, doi: 10.1016/J.MATPR.2022.11.128. [CrossRef] [Google Scholar]
  2. A. Ghaffarian Khorram, N. Fallah, B. Nasernejad, N. Afsham, M. Esmaelzadeh, and V. Vatanpour, ‘Electrochemical-based processes for produced water and oily wastewater treatment: A review’, Chemosphere, vol. 338. Elsevier Ltd, Oct. 01, 2023. doi: 10.1016/j.chemosphere.2023.139565. [CrossRef] [PubMed] [Google Scholar]
  3. T. S. Alomar, B. H. Hameed, M. Usman, F. A. Almomani, M. M. Ba-Abbad, and M. Khraisheh, ‘Recent advances on the treatment of oil fields produced water by adsorption and advanced oxidation processes’, Journal of Water Process Engineering, vol. 49, p. 103034, Oct. 2022, doi: 10.1016/J.JWPE.2022.103034. [CrossRef] [Google Scholar]
  4. T. C. Costa Louzada et al., ‘New insights in the treatment of real oilfield produced water: Feasibility of adsorption process with coconut husk activated charcoal’, Journal of Water Process Engineering, vol. 54, p. 104026, Aug. 2023, doi: 10.1016/J.JWPE.2023.104026. [CrossRef] [Google Scholar]
  5. M. A. Al-Kaabi, N. Zouari, D. A. Da’na, and M. A. Al-Ghouti, ‘Adsorptive batch and biological treatments of produced water: Recent progresses, challenges, and potentials’, J Environ Manage, vol. 290, p. 112527, Jul. 2021, doi: 10.1016/J.JENVMAN.2021.112527. [CrossRef] [PubMed] [Google Scholar]
  6. M. Purnima, T. Paul, K. Pakshirajan, and G. Pugazhenthi, ‘Onshore oilfield produced water treatment by hybrid microfiltration-biological process using kaolin based ceramic membrane and oleaginous Rhodococcus opacus’, Chemical Engineering Journal, vol. 453, p. 139850, Feb. 2023, doi: 10.1016/J.CEJ.2022.139850. [CrossRef] [Google Scholar]
  7. C. Wang, Y. Lü, C. Song, D. Zhang, F. Rong, and L. He, ‘Separation of emulsified crude oil from produced water by gas flotation: A review’, Science of The Total Environment, vol. 845, p. 157304, Nov. 2022, doi: 10.1016/J.SCITOTENV.2022.157304. [CrossRef] [Google Scholar]
  8. U. W. R. Siagian, L. Lustiyani, K. Khoiruddin, S. Ismadji, I. G. Wenten, and S. Adisasmito, ‘From waste to resource: Membrane technology for effective treatment and recovery of valuable elements from oilfield produced water’, Environmental Pollution, p. 122717, Oct. 2023, doi: 10.1016/J.ENVPOL.2023.122717. [Google Scholar]
  9. N. A. Shahrim, N. M. Abounahia, A. M. A. El-Sayed, H. Saleem, and S. J. Zaidi, ‘An overview on the progress in produced water desalination by membrane-based technology’, Journal of Water Process Engineering, vol. 51, p. 103479, Feb. 2023, doi: 10.1016/J.JWPE.2022.103479. [CrossRef] [Google Scholar]
  10. J. M. Dickhout, J. Moreno, P. M. Biesheuvel, L. Boels, R. G. H. Lammertink, and W. M. de Vos, ‘Produced water treatment by membranes: A review from a colloidal perspective’, Journal of Colloid and Interface Science, vol. 487. Academic Press Inc., pp. 523-534, Feb. 01, 2017. doi: 10.1016/j.jcis.2016.10.013. [CrossRef] [PubMed] [Google Scholar]
  11. A. E. Mansi, S. M. El-Marsafy, Y. Elhenawy, and M. Bassyouni, ‘Assessing the potential and limitations of membrane-based technologies for the treatment of oilfield produced water’, Alexandria Engineering Journal. Elsevier B.V., Apr. 01, 2022. doi: 10.1016/j.aej.2022.12.013. [Google Scholar]
  12. S. Kumaravel et al., ‘Detoxification of harmful pollutants using highly efficient visible light active Ru/TiO2/PVDF photocatalytic membranes’, Mater Res Bull, vol. 167, p. 112421, Nov. 2023, doi: 10.1016/J.MATERRESBULL.2023.112421. [CrossRef] [Google Scholar]
  13. M. Ismael, ‘A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles’, Solar Energy, vol. 211, pp. 522–546, Nov. 2020, doi: 10.1016/J.SOLENER.2020.09.073. [CrossRef] [Google Scholar]
  14. T. D. Kusworo et al., ‘Advanced method for clean water recovery from batik wastewater via sequential adsorption, ozonation and photocatalytic membrane PVDF-TiO2/rGO processes’, J Environ Chem Eng, vol. 10, no. 6, p. 108708, Dec. 2022, doi: 10.1016/J.JECE.2022.108708. [CrossRef] [Google Scholar]
  15. K. Zhang et al., ‘Black N/H-TiO2 nanoplates with a flower-like hierarchical architecture for photocatalytic hydrogen evolution’, ChemSusChem, vol. 9, no. 19, pp. 2841–2848, Oct. 2016, doi: 10.1002/cssc.201600854. [CrossRef] [PubMed] [Google Scholar]
  16. V. Verma, S. Vir Singh, and R. Article, ‘La doped TiO2 nanoparticles for photocatalysis: Synthesis, activity in terms of degradation of Methylene Blue dye and regeneration of used nanoparticles’, 2023, doi: 10.21203/rs.3.rs-2585758/v1. [Google Scholar]
  17. Y. Xin, H. Liu, and L. Han, ‘Study on mechanism of enhanced photocatalytic performance of N-doped TiO2/Ti photoelectrodes by theoretical and experimental methods’, J Mater Sci, vol. 46, no. 24, pp. 7822–7829, Dec. 2011, doi: 10.1007/s10853-011-5763-6. [CrossRef] [Google Scholar]
  18. Z. Esmaili, Z. Sadeghian, and S. N. Ashrafizadeh, ‘Anti-fouling and self-cleaning ability of BiVO4/rGO and BiVO4/g-C3N4 visible light-driven photocatalysts modified ceramic membrane in high performance ultrafiltration of oily wastewater’, J Memb Sci, vol. 688, p. 122147, Dec. 2023, doi: 10.1016/J.MEMSCI.2023.122147. [CrossRef] [Google Scholar]
  19. J. M. Luque-Alled, S. Leaper, A. Abdel-Karim, C. Skuse, and P. Gorgojo, ‘PVDF membranes containing alkyl and perfluoroalkyl-functionalized graphene nanosheets for improved membrane distillation’, J Environ Chem Eng, vol. 11, no. 3, p. 109898, Jun. 2023, doi: 10.1016/J.JECE.2023.109898. [CrossRef] [Google Scholar]
  20. S. Song, Z. Zheng, Y. Bi, X. Lv, and S. Sun, ‘Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer’, J Mater Sci, vol. 54, no. 5, pp. 3832–3846, Mar. 2019, doi: 10.1007/s10853-018-3075-9. [CrossRef] [Google Scholar]
  21. T. D. Kusworo, A. C. Kumoro, and M. Yulfarida, ‘A new visible-light driven photocatalytic PVDF-MoS2@WO3 membrane for clean water recovery from natural rubber wastewater’, Journal of Water Process Engineering, vol. 52, p. 103522, Apr. 2023, doi: 10.1016/J.JWPE.2023.103522. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.