Open Access
Issue
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 09002
Number of page(s) 14
Section Surface Chemistry and Nanoparticles
DOI https://doi.org/10.1051/e3sconf/202450309002
Published online 20 March 2024
  1. M. Paghandeh, A. Zarei-Hanzaki, H.R. Abedi, Y. Vahidshad, J. Kawalko, D. Dietrich, T. Lampke, Compressive/tensile deformation behavior and the correlated microstructure evolution of Ti-6Al-4V titanium alloy at warm temperatures, Journal of Materials Research and Technology. 10 (2021) 1291-1300. https://doi.org/10.1016/j.jmrt.2020.12.110. [CrossRef] [Google Scholar]
  2. J. Christudasjustus, T. Larimian, J. Esquivel, S. Gupta, A.A. Darwish, T. Borkar, R.K. Gupta, Aluminum alloys with high elastic modulus, Mater Lett. 320 (2022). https://doi.org/10.1016/j.matlet.2022.132292. [CrossRef] [Google Scholar]
  3. L. Pompa, Z.U. Rahman, E. Munoz, W. Haider, Surface characterization and cytotoxicity response of biodegradable magnesium alloys, Materials Science and Engineering C. 49 (2015) 761-768. https://doi.org/10.1016/j.msec.2015.01.017. [CrossRef] [Google Scholar]
  4. M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko, Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance, Prog Mater Sci. 117 (2021) 100735. https://doi.org/10.1016/j.pmatsci.2020.100735. [CrossRef] [Google Scholar]
  5. M.P. Kamil, T. Suhartono, Y.G. Ko, Corrosion behavior of plasma electrolysis layer cross-linked with a conductive polymer coating, Journal of Materials Research and Technology. 15 (2021) 4672-4682. https://doi.org/10.1016/j.jmrt.2021.10.090. [CrossRef] [Google Scholar]
  6. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf Coat Technol. 122 (1999) 73-93. https://doi.org/10.1016/S0257-8972(99)00441-7. [CrossRef] [Google Scholar]
  7. B.S. Lou, C.A. Yen, Y.Y. Chen, J.W. Lee, Effects of processing parameters on the adhesion and corrosion resistance of oxide coatings grown by plasma electrolytic oxidation on AZ31 magnesium alloys, Journal of Materials Research and Technology. 10 (2021) 1355-1371. https://doi.org/10.1016/j.jmrt.2020.12.108. [CrossRef] [Google Scholar]
  8. M. Sun, A. Matthews, A. Yerokhin, Plasma electrolytic oxidation coatings on cp-Mg with cerium nitrate and benzotriazole immersion post-treatments, Surf Coat Technol. 344 (2018) 330-341. https://doi.org/10.1016/j.surfcoat.2018.02.078. [CrossRef] [Google Scholar]
  9. P.P. Mahulikar, R.S. Jadhav, D.G. Hundiwale, Performance of Polyaniline/TiO 2 Nanocomposites in Epoxy for Corrosion Resistant Coatings, Iranian Polymer Journal. 20 (2011) 367-376. www.SID.ir. [Google Scholar]
  10. A. Diraki, S. Omanovic, Smart PANI/epoxy anti-corrosive coating for protection of carbon steel in sea water, Prog Org Coat. 168 (2022). https://doi.org/10.1016/j.porgcoat.2022.106835. [Google Scholar]
  11. R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin, A. Matthews, Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process, J Phys D Appl Phys. 43 (2010). https://doi.org/10.1088/0022-3727/43/10/105203. [CrossRef] [Google Scholar]
  12. S. Stojadinović, R. Vasilić, M. Perić, Investigation of plasma electrolytic oxidation on valve metals by means of molecular spectroscopy-a review, RSC Adv. 4 (2014) 25759-25789. https://doi.org/10.1039/c4ra03873h. [CrossRef] [Google Scholar]
  13. T.W. Clyne, S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals, International Materials Reviews. 64 (2019) 127-162. https://doi.org/10.1080/09506608.2018.1466492. [CrossRef] [Google Scholar]
  14. S. Fatimah, D.K. Yoon, Y.G. Ko, Role of V2O5 particles on the microstructures and corrosion behavior of Al-Mg-Si alloy via plasma electrolysis, J Mater Process Technol. 284 (2020) 116757. https://doi.org/10.1016/j.jmatprotec.2020.116757. [CrossRef] [Google Scholar]
  15. M.R. Bayati, R. Molaei, F. Golestani-Fard, Enhancing photoinduced hydrophilicity of micro arc oxidized TiO2 nanostructured porous layers by V-doping, Colloids Surf A Physicochem Eng Asp. 373 (2011) 51-60. https://doi.org/10.1016/j.colsurfa.2010.10.025. [CrossRef] [Google Scholar]
  16. M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, In situ growth of vanadia-titania nano/micro-porous layers with enhanced photocatalytic performance by micro-arc oxidation, Electrochim Acta. 55 (2010) 3093-3102. https://doi.org/10.1016/j.electacta.2010.01.045. [CrossRef] [Google Scholar]
  17. R. V. Ingle, S.F. Shaikh, P.K. Bhujbal, H.M. Pathan, V.A. Tabhane, Polyaniline Doped with Protonic Acids: Optical and Morphological Studies, ES Materials and Manufacturing. 8 (2020) 54-59. https://doi.org/10.30919/esmm5f732. [Google Scholar]
  18. B. Mohammadi, S. Pirsa, M. Alizadeh, Preparing chitosan-polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties, Polymers and Polymer Composites. 27 (2019) 507-517. https://doi.org/10.1177/0967391119851439. [CrossRef] [Google Scholar]
  19. A. Bordbar-Khiabani, S. Ebrahimi, B. Yarmand, Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets, Appl Surf Sci. 486 (2019) 153-165. https://doi.org/10.1016/j.apsusc.2019.05.026. [Google Scholar]
  20. R.A.K. Putri, N. Nashrah, D.I. Han, W. Al Zoubi, Y.G. Ko, Chemical incorporation of Mn3O4 into TiO2 coating by benzotriazole working as electron donor: Electrochemical and catalytic performance, Compos B Eng. 232 (2022). https://doi.org/10.1016/j.compositesb.2021.109609. [Google Scholar]
  21. B. Van der Linden, H. Terryn, J. Vereecken, Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy, J Appl Electrochem. 20 (1990) 798-803. https://doi.org/10.1007/BF01094309. [CrossRef] [Google Scholar]
  22. P. Córdoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy, Electrochim Acta. 72 (2012) 172-178. https://doi.org/10.1016/j.electacta.2012.04.020. [CrossRef] [Google Scholar]
  23. S. Skale, V. Doleček, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings, Corros Sci. 49 (2007) 1045-1055. https://doi.org/10.1016/j.corsci.2006.06.027. [CrossRef] [Google Scholar]
  24. K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, M. Sandhyarani, A.C. Bose, V. Muthupandi, S. Subramanian, Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, Electrochim Acta. 105 (2013) 468-480. https://doi.org/10.1016/j.electacta.2013.05.032. [CrossRef] [Google Scholar]
  25. M.P. Kamil, W. Al Zoubi, D.K. Yoon, H.W. Yang, Y.G. Ko, Surface modulation of inorganic layer via soft plasma electrolysis for optimizing chemical stability and catalytic activity, Chemical Engineering Journal. 391 (2020) 123614. https://doi.org/10.1016/j.cej.2019.123614. [CrossRef] [Google Scholar]
  26. M.P. Kamil, T. Suhartono, Y.G. Ko, Corrosion behavior of plasma electrolysis layer cross-linked with a conductive polymer coating, Journal of Materials Research and Technology. 15 (2021) 4672-4682. https://doi.org/10.1016/j.jmrt.2021.10.090. [CrossRef] [Google Scholar]
  27. M.P. Kamil, M. Kaseem, Y.G. Ko, Soft plasma electrolysis with complex ions for optimizing electrochemical performance, Sci Rep. 7 (2017) 44458. https://doi.org/10.1038/srep44458. [CrossRef] [Google Scholar]
  28. Y. Jafari, S.M. Ghoreishi, M. Shabani-Nooshabadi, Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties, Journal of Polymer Research. 23 (2016). https://doi.org/10.1007/s10965-016-0983-8. [CrossRef] [Google Scholar]
  29. R.M. Bandeira, J. van Drunen, A.C. Garcia, G. Tremiliosi-Filho, Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy, Electrochim Acta. 240 (2017) 215-224. https://doi.org/10.1016/j.electacta.2017.04.083. [CrossRef] [Google Scholar]
  30. L.T. Sein, Y. Wei, S.A. Jansen, Corrosion inhibition by aniline oligomers through charge transfer: A DFT approach, Synth Met. 143 (2004) 1-12. https://doi.org/10.1016/j.synthmet.2002.06.002. [CrossRef] [Google Scholar]
  31. D. Zaarei, A.A. Sarabi, F. Sharif, M.M. Gudarzi, S.M. Kassiriha, A new approach to using submicron emeraldine-base polyaniline in corrosion-resistant epoxy coatings, J Coat Technol Res. 9 (2012) 47-57. https://doi.org/10.1007/s11998-011-9325-2. [CrossRef] [Google Scholar]
  32. N. Yang, T. Yang, W. Wang, H. Chen, W. Li, Polydopamine modified polyaniline- graphene oxide composite for enhancement of corrosion resistance, J Hazard Mater. 377 (2019) 142-151. https://doi.org/10.1016/j.jhazmat.2019.05.063. [CrossRef] [Google Scholar]
  33. A. Olad, R. Nosrati, Preparation and corrosion resistance of nanostructured PVC/ZnO-polyaniline hybrid coating, Prog Org Coat. 76 (2013) 113-118. https://doi.org/10.1016/j.porgcoat.2012.08.017. [CrossRef] [Google Scholar]
  34. A. Zhu, P. Shi, S. Sun, M. Rui, Construction of rGO/Fe 3 O 4 /PANI nanocomposites and its corrosion resistance mechanism in waterborne acrylate-amino coating, Prog Org Coat. 133 (2019) 117-124. https://doi.org/10.1016/j.porgcoat.2019.04.011. [CrossRef] [Google Scholar]
  35. F. Gao, J. Mu, Z. Bi, S. Wang, Z. Li, Recent advances of polyaniline composites in anticorrosive coatings: A review, Prog Org Coat. 151 (2021). https://doi.org/10.1016/j.porgcoat.2020.106071. [Google Scholar]
  36. M. Rohwerder, A. Michalik, Conducting polymers for corrosion protection: What makes the difference between failure and success?, Electrochim Acta. 53 (2007) 1300-1313. https://doi.org/10.1016/j.electacta.2007.05.026. [CrossRef] [Google Scholar]
  37. Z. Tian, H. Yu, L. Wang, M. Saleem, F. Ren, P. Ren, Y. Chen, R. Sun, Y. Sun, L. Huang, Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings, RSC Adv. 4 (2014) 28195-28208. https://doi.org/10.1039/c4ra03146f. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.