Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01008
Number of page(s) 10
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501008
Published online 25 March 2024
  1. Ahmed, R., Hamid, A. K., Krebsbach, S. A., He, J., & Wang, D. (2022). Critical review of microplastics removal from the environment. Chemosphere, 293, 133557. [Google Scholar]
  2. Acarer, S. (2023). Microplastics in wastewater treatment plants: sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants. Water Science & Technology, 87(3), 685–710. [Google Scholar]
  3. Esfandiari, A., & Mowla, D. (2021). Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Safety and Environmental Protection, 151, 341–354. [Google Scholar]
  4. Mohana, A. A., Rahman, M., Sarker, S. K., Haque, N., Gao, L., & Pramanik, B. K. (2022). Nano/microplastics: Fragmentation, interaction with co-existing pollutants and their removal from wastewater using membrane processes. Chemosphere, 309, 136682. [Google Scholar]
  5. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  6. Zhao, D. L., Zhou, W., Shen, L., Li, B., Sun, H., Qianqian, Z., … & Chung, T. S. (2024). New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. Water Research, 121111. [Google Scholar]
  7. Fortin, S., Song, B., & Burbage, C. (2019). Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Marine pollution bulletin, 149, 110579. [Google Scholar]
  8. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  9. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  10. Saxena, K. K., Srivastava, V., & Sharma, K. (2012). Calculation of Fundamental Mechanical Properties of Single Walled Carbon Nanotube using Non-local Elasticity. Advanced Materials Research, 383, 3840–3844. [Google Scholar]
  11. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  12. Manikandan, S., Subbaiya, R., Saravanan, M., Ponraj, M., Selvam, M., & Pugazhendhi, A. (2022). A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere, 289, 132867. [Google Scholar]
  13. Reddy, K. S. P., Roopa, Y. M., Ln, K.R., & Nandan, N.S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE [Google Scholar]
  14. Agrawal, R., Singh, S., Saxena, K. K., & Buddhi, D. (2023). A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150740. [Google Scholar]
  15. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015, September). Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  16. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  17. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  18. Joseph, T. M., Al-Hazmi, H. E., Śniatała, B., Esmaeili, A., & Habibzadeh, S. (2023). Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. Environmental Research, 117114. [Google Scholar]
  19. Lee, M., Choi, W., & Lim, G. (2023). Electrokinetic-assisted filtration for fast and highly efficient removal of microplastics from water. Chemical Engineering Journal, 452, 139152. [CrossRef] [Google Scholar]
  20. Gnanasekaran, G., Arthanareeswaran, G., & Mok, Y. S. (2021). A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater. Separation and Purification Technology, 277, 119655. [Google Scholar]
  21. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020, February). An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  22. Ahmed, S. F., Islam, N., Tasannum, N., Mehjabin, A., Momtahin, A., Chowdhury, A. A., … & Mofijur, M. (2024). Microplastic removal and management strategies for wastewater treatment plants. Chemosphere, 347, 140648. [Google Scholar]
  23. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  24. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  25. Mukherjee, A. G., Wanjari, U. R., Bradu, P., Patil, M., Biswas, A., Murali, R., … & Gopalakrishnan, A. V. (2022). Elimination of microplastics from the aquatic milieu: A dream to achieve. Chemosphere, 303, 135232. [Google Scholar]
  26. Devi, M. K., Karmegam, N., Manikandan, S., Subbaiya, R., Song, H., Kwon, E. E., … & Govarthanan, M. (2022). Removal of nanoplastics in water treatment processes: a review. Science of The Total Environment, 845, 157168. [Google Scholar]
  27. Morin-Crini, N., Lichtfouse, E., Fourmentin, M., Ribeiro, A. R. L., Noutsopoulos, C., Mapelli, F., … & Crini, G. (2022). Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 20(2), 1333–1375. [CrossRef] [Google Scholar]
  28. Krishnan, R. Y., Manikandan, S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2023). Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination-A critical review. Science of The Total Environment, 858, 159681. [Google Scholar]
  29. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  30. Murray, A., & Örmeci, B. (2020). Removal effectiveness of nanoplastics (< 400 nm) with separation processes used for water and wastewater treatment. Water, 12(3), 635. [Google Scholar]
  31. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  32. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [Google Scholar]
  33. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA- MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  34. Ouda, M., Banat, F., Hasan, S. W., & Karanikolos, G. N. (2023). Recent advances on nanotechnology-driven strategies for remediation of microplastics and nanoplastics from aqueous environments. Journal of Water Process Engineering, 52, 103543. [Google Scholar]
  35. Kundu, A., Shetti, N. P., Basu, S., Reddy, K. R., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Identification and removal of micro-and nano-plastics: Efficient and cost-effective methods. Chemical Engineering Journal, 421, 129816. [CrossRef] [Google Scholar]
  36. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S. S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  37. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  38. Chen, Z., Liu, X., Wei, W., Chen, H., & Ni, B. J. (2022). Removal of microplastics and nanoplastics from urban waters: separation and degradation. Water Research, 221, 118820. [Google Scholar]
  39. Wang, R., Zhang, L., Chen, B., & Zhu, X. (2020). Low-pressure driven electrospun membrane with tuned surface charge for efficient removal of polystyrene nanoplastics from water. Journal of Membrane Science, 614, 118470. [Google Scholar]
  40. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [Google Scholar]
  41. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  42. Wan, H., Shi, K., Yi, Z., Ding, P., Zhuang, L., Mills, R., … & Xu, Z. (2022). Removal of polystyrene nanoplastic beads using gravity-driven membrane filtration: Mechanisms and effects of water matrices. Chemical Engineering Journal, 450, 138484. [CrossRef] [Google Scholar]
  43. Estahbanati, M. K., Kiendrebeogo, M., Mostafazadeh, A. K., Drogui, P., & Tyagi, R. D. (2021). Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review. Marine pollution bulletin, 168, 112374. [Google Scholar]
  44. Dhanalaxmi, B., Naidu, G. A., & Anuradha, K. (2015). Adaptive PSO based association rule mining technique for software defect classification using ANN. Procedia Computer Science, 46, 432–442. [Google Scholar]
  45. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  46. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  47. Yadav, S., Sharma, P., Yamasani, P., Minaev, S., & Kumar, S. (2014). A prototype micro-thermoelectric power generator for micro-electromechanical systems. Applied Physics Letters, 104(12). [CrossRef] [Google Scholar]
  48. Numan, A., Gill, A. A., Rafique, S., Guduri, M., Zhan, Y., Maddiboyina, B., … & Dang, N. N. (2021). Rationally engineered nanosensors: A novel strategy for the detection of heavy metal ions in the environment. Journal of Hazardous Materials, 409, 124493. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.