Open Access
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01010
Number of page(s) 10
Section Materials Science
Published online 25 March 2024
  1. Diels, C., Erol, T., Kukova, M., Wasser, J., Cieslak, M., Payre, W., … & Bos, J. (2017). Designing for comfort in shared and automated vehicles (SAV): a conceptual framework. [Google Scholar]
  2. Stone, T., Santoni de Sio, F., & Vermaas, P.E. (2020). Driving in the dark: designing autonomous vehicles for reducing light pollution. Science and engineering ethics, 26, 387–403. [Google Scholar]
  3. Merat, N., Madigan, R., & Nordhoff, S. (2017). Human factors, user requirements, and user acceptance of ride-sharing in automated vehicles. [Google Scholar]
  4. Nguyen, D. L. A Biophilic Design Concept for Enhanced UX in Autonomous Cars. [Google Scholar]
  5. Krome, S., Goddard, W., Greuter, S., Walz, S. P., & Gerlicher, A. (2015 September) A context-based design process for future use cases of autonomous driving: prototyping AutoGym. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications (pp. 265–272). [Google Scholar]
  6. Pettigrew, S., Fritschi, L., & Norman, R. (2018). The potential implications of autonomous vehicles in and around the workplace. International journal of environmental research and public health, 15(9), 1876. [Google Scholar]
  7. Vinkhuyzen, E., & Cefkin, M. (2016 November) Developing socially acceptable autonomous vehicles. In Ethnographic Praxis in Industry Conference Proceedings (Vol. 2016, No. 1, pp. 522–534). [CrossRef] [Google Scholar]
  8. Lee, J. G., Kim, K. J., Lee, S., & Shin, D. H. (2015). Can autonomous vehicles be safe and trustworthy? Effects of appearance and autonomy of unmanned driving systems. International Journal of Human- Computer Interaction, 31(10), 682–691. [Google Scholar]
  9. Litman, T. (2017). Autonomous vehicle implementation predictions. [Google Scholar]
  10. Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C: Emerging Technologies, 40, 1–13. [Google Scholar]
  11. Shladover, S. E. (2009). Cooperative (rather than autonomous) vehicle-highway automation systems. IEEE Intelligent Transportation Systems Magazine, 1(1), 10–19. [Google Scholar]
  12. Behere, S., & Törngren, M. (2016). A functional reference architecture for autonomous driving. Information and Software Technology, 73, 136–150. [Google Scholar]
  13. Reddy, K. S. P., Roopa, Y. M., Ln, K. R., & Nandan, N. S. (2020 July) IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE [Google Scholar]
  14. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017 August) Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  15. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  16. Cui, C., Ma, Y., Cao, X., Ye, W., & Wang, Z. (2024). Drive as you speak: Enabling human-like interaction with large language models in autonomous vehicles. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 902–909). [Google Scholar]
  17. Whig, P., Velu, A., Nadikattu, R. R., & Alkali, Y. J. (2024). Role of AI and IoT in Intelligent Transportation. In Artificial Intelligence for Future Intelligent Transportation (pp. 199–220). Apple Academic Press. [Google Scholar]
  18. Wendel, W. B. (2018). Economic Rationality and Ethical Values in Design-Defect Analysis: The Trolley Problem and Autonomous Vehicles. Cal. WL Rev., 55, 129. [Google Scholar]
  19. Sarker, A., Shen, H., Rahman, M., Chowdhury, M., Dey, K., Li, F., … & Narman, H. S. (2019). A review of sensing and communication, human factors, and controller aspects for information-aware connected and automated vehicles. IEEE transactions on intelligent transportation systems, 21(1), 7–29. [Google Scholar]
  20. Agrawal, R., Singh, S., Saxena, K. K., & Buddhi, D. (2023). A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150740. [Google Scholar]
  21. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015 September) Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  22. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  23. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  24. Zhang, W., Guhathakurta, S., Fang, J., & Zhang, G. (2015). Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach. Sustainable cities and society, 19, 34–45. [Google Scholar]
  25. Saxena, K. K., & Lal, A. (2012). Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects. Procedia Engineering, 38, 2347–2355. [CrossRef] [Google Scholar]
  26. Hu, X., Chen, L., Tang, B., Cao, D., & He, H. (2018). Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles. Mechanical systems and signal processing, 100, 482–500. [Google Scholar]
  27. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020 February) An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  28. Swapna Sri, M. N., Anusha, P., Madhav, V. V., Saxena, K. K., Chaitanya, C. S., Haranath, R., & Singh, B. (2023). Influence of Cu particulates on a356mmc using frequency response function and damping ratio. Advances in Materials and Processing Technologies, 1–9. [CrossRef] [Google Scholar]
  29. Singh, A. (2023). Evaluating User-Friendly Dashboards For Driverless Vehicles: Evaluation Of In-Car Infotainment In Transition (Doctoral Dissertation, Purdue University Graduate School). [Google Scholar]
  30. Chen, Q., Xie, Y., Guo, S., Bai, J., & Shu, Q. (2021). Sensing system of environmental perception technologies for driverless vehicle: A review of state of the art and challenges. Sensors and Actuators A: Physical, 319, 112566. [Google Scholar]
  31. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  32. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  33. Oliveira, L., Proctor, K., Burns, C. G., & Birrell, S. (2019). Driving style: How should an automated vehicle behave?. Information, 10(6), 219. [Google Scholar]
  34. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  35. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  36. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  37. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA- MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  38. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [Google Scholar]
  39. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [Google Scholar]
  40. Milakis, D., & Müller, S. (2021). The societal dimension of the automated vehicles transition: Towards a research agenda. Cities, 113, 103144. [Google Scholar]
  41. Pettersson, I., & Ju, W. (2017 June) Design techniques for exploring automotive interaction in the drive towards automation. In Proceedings of the 2017 conference on designing interactive systems (pp. 147–160). [Google Scholar]
  42. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S. S., Paggi, M., & Bordas, S. P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  43. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  44. Yoffie, D. B. (2014). Mobileye: The future of driverless cars. Harvard Business School Case, 715–421. [Google Scholar]
  45. Liu, T. (2023). Future street design and urban planning considering Autonomous Vehicles (Doctoral dissertation, University of Washington). [Google Scholar]
  46. Wintersberger, P., Shahu, A., Reisinger, J., Alizadeh, F., & Michahelles, F. (2022 November) Self- Balancing Bicycles: Qualitative Assessment and Gaze Behavior Evaluation. In Proceedings of the 21st International Conference on Mobile and Ubiquitous Multimedia (pp. 189–199). [Google Scholar]
  47. Meadows, J. (2017). Vehicle design: aesthetic principles in transportation design. Routledge. [Google Scholar]
  48. Berberich, N., Nishida, T., & Suzuki, S. (2020). Harmonizing artificial intelligence for social good. Philosophy & Technology, 33, 613–638. [Google Scholar]
  49. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  50. Appleyard, B., & Riggs, W. (2023). Designing for street livability in the era of driverless cars. Transportation research interdisciplinary perspectives, 21, 100868. [Google Scholar]
  51. Munusamy, R., Kumre, J., Chaturvedi, S., & Bandhu, D. (2022). Design and Development of Portable UAV Ground Control and Communication Station Integrated with Antenna Tracking Mechanism. In Intelligent Infrastructure in Transportation and Management: Proceedings of i-TRAM 2021 (pp. 193–212). Springer Singapore. [Google Scholar]
  52. Bhadauria, A., Singh, L. K., & Laha, T. (2018). Effect of physio-chemically functionalized graphene nanoplatelet reinforcement on tensile properties of aluminum nanocomposite synthesized via spark plasma sintering. Journal of Alloys and Compounds, 748, 783–793. [Google Scholar]
  53. Wang, Y., Han, Z., Xing, Y., Xu, S., & Wang, J. (2024). A Survey on Datasets for the Decision Making of Autonomous Vehicles. IEEE Intelligent Transportation Systems Magazine. [Google Scholar]
  54. Alaba, S. Y., Gurbuz, A. C., & Ball, J. E. (2024). Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection. World Electric Vehicle Journal, 15(1), 20. [Google Scholar]
  55. Gibson, B. (2017). Analysis of autonomous vehicle policies (No. KTC-16-25/PL-26-1F). Kentucky. Transportation Cabinet. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.