Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 03011
Number of page(s) 11
Section Modelling and Numerical Analysis
DOI https://doi.org/10.1051/e3sconf/202450503011
Published online 25 March 2024
  1. Shaikh, Zaffar Ahmed. “Towards sustainable development: A review of green technologies.” Trends in Renewable Energy 4.1 (2017): 1–14. [Google Scholar]
  2. Zhao, M., Liu, F., Song, Y., & Geng, J. (2020). Impact of Air pollution regulation and technological investment on sustainable development of green economy in Eastern China: Empirical analysis with panel data approach. Sustainability, 12(8), 3073. [Google Scholar]
  3. Sinha, A., Sengupta, T., & Alvarado, R. (2020). Interplay between technological innovation and environmental quality: formulating the SDG policies for next 11 economies. Journal of Cleaner Production, 242, 118549. [Google Scholar]
  4. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [Google Scholar]
  5. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022 August) Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  6. Norberg-Bohm, V. (1999). Stimulating ‘green’technological innovation: An analysis of alternative policy mechanisms. Policy sciences, 32(1), 13–38. [Google Scholar]
  7. Abid, N., Ceci, F., & Ikram, M. (2022). Green growth and sustainable development: dynamic linkage between technological innovation, ISO 14001, and environmental challenges. Environmental Science and Pollution Research, 1–20. [Google Scholar]
  8. Wang, Q., Qu, J., Wang, B., Wang, P., & Yang, T. (2019). Green technology innovation development in China in 1990-2015. Science of the Total Environment, 696, 134008. [Google Scholar]
  9. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S. S., Paggi, M., & Bordas, S. P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  10. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  11. Shah, K. J., Pan, S. Y., Lee, I., Kim, H., You, Z., Zheng, J. M., & Chiang, P. C. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. [CrossRef] [Google Scholar]
  12. Benuzh, A., & Mochalov, I. (2020 February) Implementation of sustainable technology of green roofs for renovation in moscow. In IOP Conference Series: Materials Science and Engineering (Vol. 753, No. 2, p. 022030). IOP Publishing. [Google Scholar]
  13. Bilal, A., Li, X., Zhu, N., Sharma, R., & Jahanger, A. (2021). Green technology innovation, globalization, and CO2 emissions: recent insights from the OBOR economies. Sustainability, 14(1), 236. [Google Scholar]
  14. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  15. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  16. Rohracher, H. (2001). Managing the technological transition to sustainable construction of buildings: a socio-technical perspective. Technology Analysis & Strategic Management, 13(1), 137–150. [Google Scholar]
  17. Li, W., Shao, L., Wang, W., Li, H., Wang, X., Li, Y., … & Zhang, D. (2020). Air quality improvement in response to intensified control strategies in Beijing during 2013-2019. Science of the Total Environment, 744, 140776. [Google Scholar]
  18. Jiang, S. Y., Ma, A., & Ramachandran, S. (2018). Negative air ions and their effects on human health and air quality improvement. International journal of molecular sciences, 19(10), 2966. [Google Scholar]
  19. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  20. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  21. Parida, B. R., Bar, S., Roberts, G., Mandal, S. P., Pandey, A. C., Kumar, M., & Dash, J. (2021). Improvement in air quality and its impact on land surface temperature in major urban areas across India during the first lockdown of the pandemic. Environmental research, 199, 111280. [Google Scholar]
  22. Phruksahiran, N. (2021). Improvement of air quality index prediction using geographically weighted predictor methodology. Urban Climate, 38, 100890. [Google Scholar]
  23. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020 February) An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  24. Agrawal, R., Singh, S., Saxena, K. K., & Buddhi, D. (2023). A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150740. [Google Scholar]
  25. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA- MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  26. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  27. Brilli, F., Fares, S., Ghirardo, A., de Visser, P., Calatayud, V., Muñoz, A., … & Menghini, F. (2018). Plants for sustainable improvement of indoor air quality. Trends in plant science, 23(6), 507–512. [Google Scholar]
  28. Park, J., Park, S., & Lee, D. K. (2016). CFD modeling of ventilation ducts for improvement of air quality in closed mines. Geosystem Engineering, 19(4), 177–187. [Google Scholar]
  29. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  30. Dwivedi, A., Shukla, S. K., Bharti, P. K., Gupta, N., Saxena, K. K., & Dwivedi, Y. D. (2023). Comparative study of polyanthranilic acid and sulphonated polyaniline on the mild steel corrosion in aqueous hydrochloric acid. Canadian Metallurgical Quarterly, 1–9. [CrossRef] [Google Scholar]
  31. Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., … & Aggarwal, V. (2021). Indoor air quality improvement in COVID-19 pandemic. Sustainable Cities and Society, 70, 102942. [Google Scholar]
  32. Huang, X., Tang, G., Zhang, J., Liu, B., Liu, C., Zhang, J., … & Wang, Y. (2021). Characteristics of PM2. 5 pollution in Beijing after the improvement of air quality. Journal of Environmental Sciences, 100, 1–10. [Google Scholar]
  33. Reddy, K. S. P., Roopa, Y. M., Ln, K. R., & Nandan, N. S. (2020 July) IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE. [Google Scholar]
  34. Swapna Sri, M. N., Anusha, P., Madhav, V. V., Saxena, K. K., Chaitanya, C. S., Haranath, R., & Singh, B. (2023). Influence of Cu particulates on a356mmc using frequency response function and damping ratio. Advances in Materials and Processing Technologies, 1–9. [CrossRef] [Google Scholar]
  35. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015 September) Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  36. Sekar, A., Jasna, R. S., Binoy, B. V., Mohan, P., & Varghese, G. K. (2023). Air quality change and public perception during the COVID-19 lockdown in India. Gondwana Research, 114, 15–29. [Google Scholar]
  37. Méndez, M., Merayo, M. G., & Núñez, M. (2023). Machine learning algorithms to forecast air quality: a survey. Artificial Intelligence Review, 1–36. [Google Scholar]
  38. Păltinean, G. A., Petean, I., Arghir, G., Muntean, D. F., Mureşan, L., & Tomoaia-Cotişel, M. (2017). Improvement of air quality management strategy by evaluation of urban pollution. [Google Scholar]
  39. Rehman Khan, S. A., Yu, Z., Ridwan, I. L., Irshad, R., Ponce, P., & Tanveer, M. (2023). Energy efficiency, carbon neutrality and technological innovation: a strategic move towards green economy. Economic research-Ekonomska istraživanja, 36(2). [Google Scholar]
  40. Shukla, A., Gupta, N., Ramya, N. S., Saxena, K. K., Iqbal, A., & Djavanroodi, F. (2023). Environmental sustainability in construction: Influence of Megaterium Bacteria on the durability and mechanical properties of concrete incorporating calcined clay. Mechanics of Advanced Materials and Structures, 1–13. [Google Scholar]
  41. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  42. Amin, N., Shabbir, M. S., Song, H., Farrukh, M. U., Iqbal, S., & Abbass, K. (2023). A step towards environmental mitigation: Do green technological innovation and institutional quality make a difference?. Technological Forecasting and Social Change, 190, 122413. [Google Scholar]
  43. Ibrahim, R. L., Huang, Y., Mohammed, A., & Adebayo, T. S. (2023). Natural resources-sustainable environment conflicts amidst COP26 resolutions: investigating the role of renewable energy, technology innovations, green finance, and structural change. International Journal of Sustainable Development & World Ecology, 30(4), 445–457. [Google Scholar]
  44. Fang, Z. (2023). Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renewable Energy, 205, 772–782. [CrossRef] [Google Scholar]
  45. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  46. Mahardhani, A. J. (2023). The Role of Public Policy in Fostering Technological Innovation and Sustainability. Journal of Contemporary Administration and Management (ADMAN), 1(2), 47–53. [Google Scholar]
  47. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  48. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [Google Scholar]
  49. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017 August) Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.