Open Access
Issue
E3S Web of Conf.
Volume 507, 2024
International Conference on Futuristic Trends in Engineering, Science & Technology (ICFTEST-2024)
Article Number 01005
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202450701005
Published online 29 March 2024
  1. Dwivedi, S. P., & Sharma, S. (2023). Metallic cladding through microwave energy of the mixture of Ni and 15% SiC powder on AISI 304: A green approach in surface engineering. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089231167930. [Google Scholar]
  2. Gupta, D., Bhovi, P. M., Sharma, A. K., & Dutta, S. (2012). Development and characterization of microwave composite cladding. Journal of manufacturing processes, 14(3), 243–249. [CrossRef] [Google Scholar]
  3. Bhoi, N. K., Singh, H., Pratap, S., & Jain, P. K. (2019). Microwave material processing: a clean, green, and sustainable approach. In Sustainable engineering products and manufacturing technologies (pp. 3–23). Academic Press. [Google Scholar]
  4. Mehta, A., Vasudev, H., & Jeyaprakash, N. (2023). Role of sustainable manufacturing approach: microwave processing of materials. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–17. [Google Scholar]
  5. Sharanabasava, H., Prasad, C. D., & Ramesh, M. R. (2024). Characterization and Wear Behavior of NiCrMoSiC Microwave Cladding. Journal of Materials Engineering and Performance, 33(2), 763–775. [CrossRef] [Google Scholar]
  6. Sharanabasava, H., Prasad, C. D., & Ramesh, M. R. (2023). Effect of Mo-and SiC-Reinforced NiCr Microwave Cladding on Microstructure, Mechanical and Wear Properties. Journal of The Institution of Engineers (India): Series D, 1–13. [Google Scholar]
  7. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A., … & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self-explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  8. Gupta, D., & Sharma, A. K. (2014). Microwave cladding: a new approach in surface engineering. Journal of manufacturing processes, 16(2), 176–182. [CrossRef] [Google Scholar]
  9. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: A review. Reviews in Environmental Science and Bio/Technology, 18, 681–697. [CrossRef] [Google Scholar]
  10. Hebbale, A. M., & Srinath, M. S. (2016). Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation. Journal of materials research and technology, 5(4), 293–301. [CrossRef] [Google Scholar]
  11. Shubham Sharma, Shashi Prakash Dwivedi, Changhe Li, Fuad A. Awwad, M. Ijaz Khan, Emad A.A. Ismail, Unveiling of grain structure, porosity, phase distributions, microstructural morphology, surface hardness, and tribo-corrosion characteristics of nickel, and titanium dioxide-based SS-304 steel microwave composite coatings cladding, Journal of Materials Research and Technology, 2023, https://doi.org/10.1016/j.jmrt.2023.12.144. [Google Scholar]
  12. Wang, Y., Ye, H., Xia, C., Shi, Y., Zhang, Z., Lam, S. S., … & Ge, S. (2023). High-performance poplar-polyethylene laminates based on microwave-assisted acetic acid pretreatment process with potential application in construction. Journal of Building Engineering, 72, 106731. [CrossRef] [Google Scholar]
  13. Dhanalaxmi, B., Naidu, G. A., & Anuradha, K. (2015). Adaptive PSO based association rule mining technique for software defect classification using ANN. Procedia Computer Science, 46, 432–442. [CrossRef] [Google Scholar]
  14. Sharma, A. K., & Gupta, D. (2012). On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating. Applied surface science, 258(15), 5583–5592. [CrossRef] [Google Scholar]
  15. Prashar, G., Vasudev, H., & Bansal, A. (2022). Microwave-Assisted Casting: A Key to the Metal Casting Industry. In Advances in Microwave Processing for Engineering Materials (pp. 172–190). CRC Press. [Google Scholar]
  16. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., … & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  17. Awasthi, A., Saxena, K. K., & Dwivedi, R. K. (2021). An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Materials Today: Proceedings, 44, 2061–2068. [Google Scholar]
  18. Baker-Fales, M., Chen, T. Y., & Vlachos, D. G. (2023). Scale-up of microwave-assisted, continuous flow, liquid phase reactors: Application to 5-Hydroxymethylfurfural production. Chemical Engineering Journal, 454, 139985. [CrossRef] [Google Scholar]
  19. Sumit Kanchan, Swastik Pradhan, Rajeev Kumar, Shubham Sharma, Omang Bhandari, Manisha Priyadarshini, Shashi Prakash Dwivedi, Fuad A. Awwad, M. Ijaz Khan, Emad A. A. Ismail, Renu Dhiman, “Developing a model for waste plastic biofuels in CRDi diesel engines using FTIR, GCMS, and WASPAS synchronisations for engine analysis” Energy Exploration & Exploitation, 2023 DOI: 10.1177/01445987231216762 [Google Scholar]
  20. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  21. Veronesi, P., Rosa, R., Colombini, E., & Leonelli, C. (2015). Microwave-assisted preparation of high entropy alloys. Technologies, 3(4), 182–197. [CrossRef] [Google Scholar]
  22. Yadav, S., Sharma, P., Yamasani, P., Minaev, S., & Kumar, S. (2014). A prototype micro-thermoelectric power generator for micro-electromechanical systems. Applied Physics Letters, 104(12). [CrossRef] [Google Scholar]
  23. Choy, M. T., Tang, C. Y., Chen, L., Law, W. C., Tsui, C. P., & Lu, W. W. (2015). Microwave assisted-in situ synthesis of porous titanium/calcium phosphate composites and their in vitro apatite-forming capability. Composites Part B: Engineering, 83, 50–57. [Google Scholar]
  24. Gajmal, S., & Raut, D. N. (2019). A review of opportunities and challenges in microwave assisted casting. Recent Trends i Production Engineering, 2, 1–17. [CrossRef] [Google Scholar]
  25. Dwivedi SP, Yadav AK, Saxena A, Dwivedi VK. Tribo-mechanical, physical and thermal behaviour of Al/Si3N4 composite with and without the addition of Cu, Ni and Cr entropy elements. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2023;0(0). doi:10.1177/09544089231189663 [Google Scholar]
  26. Sun, A., Wang, D., Wu, Z., Li, L., Wang, J., & Duan, B. (2014). Microwave-assisted synthesis of Mo–Cu nano-powders at an ultra-low temperature and their sintering properties. Materials Chemistry and Physics, 148(3), 494–498. [CrossRef] [Google Scholar]
  27. Lalita Chopra, Anika Sharma, Jasgurpreet Singh Chohan, Viyat Varun Upadhyay, Rajesh Singh, Shubham Sharma, Shashi Prakash Dwivedi, Abhinav Kumar, Elsayed M. Tag-Eldin, Synthesis and characterizations of super adsorbent hydrogel based on biopolymer, Guar Gum-grafted-Poly (hydroxyethyl methacrylate) (Gg-g-Poly (HEMA)) for the removal of Bismarck brown Y dye from aqueous solution, International Journal of Biological Macromolecules, Volume 256, Part 2, 2024, 128518, https://doi.org/10.1016/j.ijbiomac.2023.128518. [Google Scholar]
  28. Kumar, L. P. (2023). Parametric Investigation of Microwave Assisted Materials Processing. [Google Scholar]
  29. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  30. Vijayakumar, Y., Nagaraju, P., Yaragani, V., Parne, S. R., Awwad, N. S., & Reddy, M. R. (2020). Nanostructured Al and Fe co-doped ZnO thin films for enhanced ammonia detection. Physica B: Condensed Matter, 581, 411976. [Google Scholar]
  31. Mao, H., Zhou, D., Hashisho, Z., Wang, S., Chen, H., & Wang, H. H. (2015). Preparation of pinewood-and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions. BioResources, 10(1), 809–821. [Google Scholar]
  32. Verma SK, Dwivedi VK, Dwivedi SP. Effect of spent alumina catalyst and date palm fiber ash addition in the development of aluminum-based composite. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2023;0(0). doi:10.1177/09544062231214021 [Google Scholar]
  33. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304. [CrossRef] [Google Scholar]
  34. Bantle, M., Käfer, T., & Eikevik, T. M. (2013). Model and process simulation of microwave assisted convective drying of clipfish. Applied Thermal Engineering, 59(1-2), 675–682. [CrossRef] [Google Scholar]
  35. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  36. Shashi Prakash Dwivedi, Indradeep Kumar, Shankar Sehgal, Nakul Gupta & Kuldeep K. Saxena (2023) Development of dissimilar AA2014 and AA2024 based composite with nano-Si3N4 reinforcement by friction stir process technique, Journal of Adhesion Science and Technology, DOI: 10.1080/01694243.2023.2242111 [Google Scholar]
  37. Zhang, J., Tahmasebi, A., Omoriyekomwan, J. E., & Yu, J. (2021). Microwave-assisted synthesis of biocharcarbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology, 213, 106714. [CrossRef] [Google Scholar]
  38. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263. [CrossRef] [Google Scholar]
  39. Khoobi, A., & Salavati-Niasari, M. (2019). High performance of electrocatalytic oxidation in direct glucose fuel cell using molybdate nanostructures synthesized by microwave-assisted method. Energy, 178, 50–56. [CrossRef] [Google Scholar]
  40. Sandeep Kumar, Rakesh Dang, Alakesh Manna, Nishant Kumar Dhiman, Shubham Sharma, Shashi Prakash Dwivedi, Abhinav Kumar, Changhe Li, Elsayed M. Tag-Eldin, Mohamed Abbas, Optimization of chemical treatment process parameters for enhancement of mechanical properties of Kenaf fiber-reinforced polylactic acid composites: A comparative study of mechanical, morphological and microstructural analysis, Journal of Materials Research and Technology, Volume 26, 2023, Pages 8366–8387, https://doi.org/10.1016/j.jmrt.2023.09.157. [CrossRef] [Google Scholar]
  41. Buratto, R. T., Cocero, M. J., & Martín, Á. (2021). Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chemical Engineering and Processing-Process Intensification, 160, 108269. [CrossRef] [Google Scholar]
  42. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830. [CrossRef] [Google Scholar]
  43. Radhakrishnan, S., Krishna, J.S., Dwivedi, S.P. et al. Experimental investigation of mechanical and physical properties of coconut shell and eggshell filler-based bio-fiber reinforced epoxy hybrid composites. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05037-4. [Google Scholar]
  44. Singh, M. K., Zafar, S., & Talha, M. (2019). Development and characterisation of poly-L-lactide-based foams fabricated through microwave-assisted compression moulding. Journal of Cellular Plastics, 55(5), 523–541. [CrossRef] [Google Scholar]
  45. Chakraborty, S., Simon, R., Vadakkekara, A., & Mary, N. L. (2022). Microwave assisted synthesis of poly (ortho-phenylenediamine-co-aniline) and functionalised carbon nanotube nanocomposites for fabric-based supercapacitors. Electrochimica Acta, 403, 139678. [CrossRef] [Google Scholar]
  46. Reddy, K. S. P., Roopa, Y. M., LN, K. R., & Nandan, N. S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE. [Google Scholar]
  47. Naik, T. P., Gairola, S., Singh, I., & Sharma, A. K. (2024). Microwave-assisted alkali treatment of sisal fiber for fabricating composite as non-structural building materials. Construction and Building Materials, 411, 134651. [CrossRef] [Google Scholar]
  48. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R., … & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  49. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [CrossRef] [Google Scholar]
  50. Rathee, Y., Aggarwal, V., & Sehgal, A. (2016). Microwave assisted casting for fabrication of micro components. Indian Journal of Science and Technology, 9(36). [CrossRef] [Google Scholar]
  51. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D., … & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  52. Grover, T., Pandey, A., Kumari, S. T., Awasthi, A., Singh, B., Dixit, P., … & Saxena, K. K. (2020). Role of titanium in bio implants and additive manufacturing: An overview. Materials Today: Proceedings, 26, 3071–3080. [Google Scholar]
  53. Makepa, D. C., Chihobo, C. H., Manhongo, T. T., & Musademba, D. (2023). Life-cycle assessment of microwave-assisted pyrolysis of pine sawdust as an emerging technology for biodiesel production. Results in Engineering, 20, 101480. [CrossRef] [Google Scholar]
  54. Jayanthi, N., Babu, B. V., & Rao, N. S. (2017). Survey on clinical prediction models for diabetes prediction. Journal of Big Data, 4, 1–15. [CrossRef] [Google Scholar]
  55. Song, Y., Li, Y., Li, J., Li, Y., Niu, S., & Li, N. (2018). Ultrasonic-microwave assisted synthesis of three-dimensional polyvinyl alcohol carbonate/graphene oxide sponge and studies of surface resistivity and thermal stability. Ultrasonics Sonochemistry, 42, 665–671. [CrossRef] [PubMed] [Google Scholar]
  56. Peddakrishna, S., & Khan, T. (2018). Design of UWB monopole antenna with dual notched band characteristics by using π-shaped slot and EBG resonator. AEU-International Journal of Electronics and Communications, 96, 107–112. [Google Scholar]
  57. Raji, A., Nesakumar, J. I. E. T., Mani, S., Perumal, S., Rajangam, V., Thirunavukkarasu, S., & Lee, Y. R. (2021). Biowaste-originated heteroatom-doped porous carbonaceous material for electrochemical energy storage application. Journal of Industrial and Engineering Chemistry, 98, 308–317. [CrossRef] [Google Scholar]
  58. Jia, C., Akbarpour, M. R., Gharamaleki, M. A., Ebadzadeh, T., & Kim, H. S. (2023). Synthesis and characterization of novel NiTi–Ni3Ti/SiC nanocomposites prepared by mechanical alloying and microwave-assisted sintering process. Ceramics International, 49(14), 23358–23366. [CrossRef] [Google Scholar]
  59. Semida, W. M., Hassan, A. M., Mohammaden, T. F., Negm, S. H., & El-Magied, M. A. (2023). Microwave-Assisted Synthesis of Functionalized Chitosan Adsorbents for Cerium Adsorption from Aqueous Solutions. Radiochemistry, 65(4), 510–522. [CrossRef] [Google Scholar]
  60. Kota, V. R., & Bhukya, M. N. (2019). A novel global MPP tracking scheme based on shading pattern identification using artificial neural networks for photovoltaic power generation during partial shaded condition. IET Renewable Power Generation, 13(10), 1647–1659. [CrossRef] [Google Scholar]
  61. Dwivedi, S.P., Chaudhary, V. & Sharma, S. Effect of the Addition of Waste Glass Powder along with TiC as Reinforcement on Microstructure, Wettability, Mechanical and Tribological Behavior of AZ91D Magnesium Based Alloy. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01117-3. [Google Scholar]
  62. Leonelli, C., Poli, G., & Veronesi, P. Optimisation of the microwave assisted SHS of intermetallics in single mode applicators. [Google Scholar]
  63. Singh, B., Kumar, I., Saxena, K. K., Mohammed, K. A., Khan, M. I., Moussa, S. B., & Abdullaev, S. S. (2023). A future prospects and current scenario of aluminium metal matrix composites characteristics. Alexandria Engineering Journal, 76, 1–17. [CrossRef] [Google Scholar]
  64. Ding, M., Xu, D., & Wang, Q. (2022). Microwave-assisted foaming and sintering high-strength and antistatic polypropylene bead foams by constructing conductive 3D skeleton structure. Composites Part A: Applied Science and Manufacturing, 163, 107196. [CrossRef] [Google Scholar]
  65. Sharma, K., Saxena, K. K., & Shukla, M. (2012). Effect of multiple Stone-Wales and Vacancy defects on the mechanical behavior of carbon nanotubes using Molecular Dynamics. Procedia Engineering, 38, 3373–3380. [CrossRef] [Google Scholar]
  66. Zheng, A., Zhao, K., Zhao, Z., Jiang, L., Huang, Z., Wei, G., … & Li, H. (2017). Fast pyrolysis of nitrogen-rich wood waste pretreated by microwave-assisted glycerolysis. waste and biomass valorization, 8, 349–358. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.