Open Access
Issue
E3S Web of Conf.
Volume 507, 2024
International Conference on Futuristic Trends in Engineering, Science & Technology (ICFTEST-2024)
Article Number 01014
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202450701014
Published online 29 March 2024
  1. Choi, H. W., Heo, Y. W., Lee, J. H., Kim, J. J., Lee, H. Y., Park, E. T., & Chung, Y. K. (2007). Effects of Ni particle size on dielectric properties of PMMA-Ni-BaTiO3 composites. Integrated Ferroelectrics, 87(1), 85–93. [Google Scholar]
  2. Buttlar, T., Walther, T., Dörr, K., & Ebbinghaus, S. G. (2020). Preparation and Magnetoelectric Behavior of Ni/BaTiO3 Heterostructures with 0‐3 Connectivity. physica status solidi (b), 257(7), 1900622. [Google Scholar]
  3. Dwivedi, S.P. (2023), “Development and characterization of grinding sludge-reinforced aluminum-based composite by friction stir process technique”, World Journal of Engineering, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/WJE-12-2022-0484. [Google Scholar]
  4. Polotai, A. V., Yang, G. Y., Dickey, E. C., & Randall, C. A. (2007). Utilization of Multiple‐Stage Sintering to Control Ni Electrode Continuity in Ultrathin Ni–BaTiO3 Multilayer Capacitors. Journal of the American Ceramic Society, 90(12), 3811–3817. [Google Scholar]
  5. Somani, N., Kumar, K., & Gupta, N. (2020). Review on microwave cladding: a new approach. In Advances in Materials Processing: Select Proceedings of ICFMMP 2019 (pp. 77–90). Springer Singapore. [Google Scholar]
  6. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: A review. Reviews in Environmental Science and Bio/Technology, 18, 681–697. [Google Scholar]
  7. Gupta, D., & Sharma, A. K. (2011). Development and microstructural characterization of microwave cladding on austenitic stainless steel. Surface and Coatings Technology, 205(21-22), 5147–5155. [Google Scholar]
  8. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [Google Scholar]
  9. Gupta, D., & Sharma, A. K. (2014). Microwave cladding: a new approach in surface engineering. Journal of manufacturing processes, 16(2), 176–182. [Google Scholar]
  10. Sharanabasava, H., Prasad, C. D., & Ramesh, M. R. (2024). Characterization and Wear Behavior of NiCrMoSiC Microwave Cladding. Journal of Materials Engineering and Performance, 33(2), 763–775. [Google Scholar]
  11. Singh, B., & Zafar, S. (2020). Understanding time-temperature characteristics in microwave cladding. Manufacturing Letters, 25, 75–80. [Google Scholar]
  12. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R., … & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [Google Scholar]
  13. Gupta, D., & Sharma, A. K. (2012). Microstructural characterization of cermet cladding developed through microwave irradiation. Journal of materials engineering and performance, 21, 2165–2172. [Google Scholar]
  14. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [Google Scholar]
  15. Kaushal, S., Sirohi, V., Gupta, D., Bhowmick, H., & Singh, S. (2018). Processing and characterization of composite cladding through microwave heating on martensitic steel. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(1), 80–86. [Google Scholar]
  16. Singh, G., Vasudev, H., Bansal, A., & Vardhan, S. (2020). Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection. Materials Research Express, 7(2), 026512. [Google Scholar]
  17. Gupta, D., & Sharma, A. K. (2011). Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation. Wear, 271(9-10), 1642–1650. [Google Scholar]
  18. Srivastava, S. C., Murtaza, Q., & Kumar, P. (2020). Microwave cladding on metallic surfaces: A review. Materials Today: Proceedings, 21, 1533–1536. [Google Scholar]
  19. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., … & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [Google Scholar]
  20. Kaushal, S., Gupta, D., & Bhowmick, H. (2017). Investigation of dry sliding wear behavior of Ni–SiC microwave cladding. Journal of Tribology, 139(4), 041603. [Google Scholar]
  21. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  22. Hebbale, A. M., & Srinath, M. S. (2016). Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation. Journal of materials research and technology, 5(4), 293–301. [Google Scholar]
  23. Sharma, A. K., & Gupta, D. (2012). On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating. Applied surface science, 258(15), 5583–5592. [Google Scholar]
  24. Gupta, D., & Sharma, A. K. (2011). Microwave cladding: a new surface engineering technique for developing uniform microstructure. i-Manager’s Journal on Mechanical Engineering, 1(2), 17. [Google Scholar]
  25. Sonia, P., Jain, J. K., & Saxena, K. K. (2021). Influence of ultrasonic vibration assistance in manufacturing processes: A Review. Materials and Manufacturing Processes, 36(13), 1451–1475. [Google Scholar]
  26. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [Google Scholar]
  27. Bansal, A., Zafar, S., & Sharma, A. K. (2015). Microstructure and abrasive wear performance of Ni-WC composite microwave clad. Journal of Materials Engineering and Performance, 24, 3708–3716. [Google Scholar]
  28. Sharma, K., Saxena, K. K., & Shukla, M. (2012). Effect of multiple Stone-Wales and Vacancy defects on the mechanical behavior of carbon nanotubes using Molecular Dynamics. Procedia Engineering, 38, 3373–3380. [Google Scholar]
  29. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D., … & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [Google Scholar]
  30. Sharanabasava, H., Prasad, C. D., & Ramesh, M. R. (2023). Effect of Mo-and SiC-Reinforced NiCr Microwave Cladding on Microstructure, Mechanical and Wear Properties. Journal of The Institution of Engineers (India): Series D, 1–13. [Google Scholar]
  31. Peddakrishna, S., & Khan, T. (2018). Design of UWB monopole antenna with dual notched band characteristics by using π-shaped slot and EBG resonator. AEU-International Journal of Electronics and Communications, 96, 107–112. [Google Scholar]
  32. Prasad, C. D., Joladarashi, S., Ramesh, M. R., Srinath, M. S., & Channabasappa, B. H. (2019). Development and sliding wear behavior of Co-Mo-Cr-Si cladding through microwave heating. Silicon, 11, 2975–2986. [Google Scholar]
  33. Awasthi, A., Saxena, K. K., & Dwivedi, R. K. (2021). An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Materials Today: Proceedings, 44, 2061–2068. [Google Scholar]
  34. Mishra, T. K., Kumar, A., & Sinha, S. K. (2020). Investigation of sliding wear behaviour of Ni-WC microwave cladding. Materials Today: Proceedings, 26, 1418–1422. [Google Scholar]
  35. Radhakrishnan, S., Khan, A., Dwivedi, S.P. et al. Studies on mechanical, thermal, and water immersion of plant and animal wastage nanofiller–based bio-fiber-reinforced composites. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04788-4 [Google Scholar]
  36. Shashi Prakash Dwivedi, S Selvaprakash, Shubham Sharma, Soni Kumari, Kuldeep K Saxena, Rajesh Goyal, Amjad Iqbal & Faramarz Djavanroodi (2023): Evaluation of various properties for spent alumina catalyst and Si3N4 reinforced with PET-based polymer composite, Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2023.2249888 [Google Scholar]
  37. Kaushal, S., Gupta, D., & Bhowmick, H. (2018). An approach for functionally graded cladding of composite material on austenitic stainless steel substrate through microwave heating. Journal of Composite Materials, 52(3), 301–312. [Google Scholar]
  38. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304. [Google Scholar]
  39. Prasad, C. D., Lingappa, M. S., Joladarashi, S., Ramesh, M. R., & Sachin, B. (2021). Characterization and sliding wear behavior of CoMoCrSi+ Flyash composite cladding processed by microwave irradiation. Materials Today: Proceedings, 46, 2387–2391. [Google Scholar]
  40. Shashi Prakash Dwivedi, Shubham Sharma, B. Vijay Krishna, Pankaj Sonia, Kuldeep Kumar Saxena, Amjad Iqbal & Faramarz Djavanroodi (2023) Effect of the addition of TiB2 with waste glass powder on microstructure, mechanical and physical behavior of PET-based polymer composite material, Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2023.2239229 [Google Scholar]
  41. Raji, A., Nesakumar, J. I. E. T., Mani, S., Perumal, S., Rajangam, V., Thirunavukkarasu, S., & Lee, Y. R. (2021). Biowaste-originated heteroatom-doped porous carbonaceous material for electrochemical energy storage application. Journal of Industrial and Engineering Chemistry, 98, 308–317. [Google Scholar]
  42. Dwivedi SP, Chaudhary V, Sharma S, Sharma S. Ultrasonic vibration effect in the development of Al/CCLW/alumina metal matrix composite to enhance mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2023;0(0). doi:10.1177/09544089231200467 [Google Scholar]
  43. Mago, J., Bansal, S., Gupta, D., & Jain, V. (2020). Investigation of Microwave Processing Parameters on Development of Ni-40Cr 3 C 2 Composite Clad and Their Characterization. Metallurgical and Materials Transactions A, 51, 4288–4300. [Google Scholar]
  44. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263. [Google Scholar]
  45. Dwivedi SP, Yadav AK, Saxena A, Dwivedi VK. Tribo-mechanical, physical and thermal behaviour of Al/Si3N4 composite with and without the addition of Cu, Ni and Cr entropy elements. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2023;0(0). doi:10.1177/09544089231189663 [Google Scholar]
  46. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  47. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830. [Google Scholar]
  48. Babu, A., Arora, H. S., Behera, S. N., Sharma, M., & Grewal, H. S. (2018). Towards highly durable bimodal composite claddings using microwave processing. Surface and Coatings Technology, 349, 655–666. [Google Scholar]
  49. Dwivedi, S.P., Chaudhary, V. & Sharma, S. Effect of the Addition of Waste Glass Powder along with TiC as Reinforcement on Microstructure, Wettability, Mechanical and Tribological Behavior of AZ91D Magnesium Based Alloy. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01117-3. [Google Scholar]
  50. Yadav, S., Sharma, P., Yamasani, P., Minaev, S., & Kumar, S. (2014). A prototype micro-thermoelectric power generator for micro-electromechanical systems. Applied Physics Letters, 104(12). [Google Scholar]
  51. Kumar, K. P., Mohanty, A., Lingappa, M. S., Srinath, M. S., & Panigrahi, S. K. (2020). Enhancement of surface properties of austenitic stainless steel by nickel based alloy cladding developed using microwave energy technique. Materials Chemistry and Physics, 256, 123657. [Google Scholar]
  52. Shashi Prakash Dwivedi, Indradeep Kumar, Shankar Sehgal, Nakul Gupta & Kuldeep K. Saxena (2023) Development of dissimilar AA2014 and AA2024 based composite with nano-Si3N4 reinforcement by friction stir process technique, Journal of Adhesion Science and Technology, DOI: 10.1080/01694243.2023.2242111 [Google Scholar]
  53. Parashuram, L., Sreenivasa, S., Akshatha, S., & Udayakumar, V. (2019). A non-enzymatic electrochemical sensor based on ZrO2: Cu (I) nanosphere modified carbon paste electrode for electro-catalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis. Food chemistry, 300, 125178. [Google Scholar]
  54. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [Google Scholar]
  55. Hebbale, A. M., & Srinath, M. S. (2016). Microstructure and experimental design analysis of nickel based clad developed through microwave energy. Perspectives in Science, 8, 257–259. [Google Scholar]
  56. Shashi Prakash Dwivedi, Shubham Sharma, Changhe Li, Yanbin Zhang, Abhinav Kumar, Rajesh Singh, Sayed M. Eldin, Mohamed Abbas, Effect of nano-TiO2 particles addition on dissimilar AA2024 and AA2014 based composite developed by friction stir process technique, Journal of Materials Research and Technology, Volume 26, 2023, Pages 1872–1881, https://doi.org/10.1016/j.jmrt.2023.07.234. [Google Scholar]
  57. Reddy, K. S. P., Roopa, Y. M., LN, K. R., & Nandan, N. S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE. [Google Scholar]
  58. Hebbale, A. M. (2015). Microstructural characterization of Ni based cladding on SS-304 developed through microwave energy. Materials Today: Proceedings, 2(4-5), 1414–1420. [Google Scholar]
  59. Pethampalayam Karuppanan Miniappan, Sivagnanam Marimuthu*, Selvan Dharani Kumar, Gopal Gokilakrishnan, Shubham Sharma*, Changhe Li, Shashi Prakash Dwivedi, and Mohamed Abbas, “Mechanical, fracture-deformation, and tribology behavior of fillers-reinforced sisal fiber composites for lightweight automotive applications” Reviews on Advanced Materials Science 2023; 62: 20230342 [Google Scholar]
  60. Vijayakumar, Y., Nagaraju, P., Yaragani, V., Parne, S. R., Awwad, N. S., & Reddy, M. R. (2020). Nanostructured Al and Fe co-doped ZnO thin films for enhanced ammonia detection. Physica B: Condensed Matter, 581, 411976. [Google Scholar]
  61. Hebbale, A. M., & Srinath, M. S. (2018). Microstructural studies of cobalt based microwave clad developed on martensitic stainless steel (AISI-420). Transactions of the Indian Institute of Metals, 71, 737–743. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.