Open Access
Issue
E3S Web of Conf.
Volume 507, 2024
International Conference on Futuristic Trends in Engineering, Science & Technology (ICFTEST-2024)
Article Number 01069
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202450701069
Published online 29 March 2024
  1. Bozzola, E.; Spina, G.; Agostiniani, R.; Barni, S.; Russo, R.; Scarpato, E.; Di Mauro, A.; Di Stefano, A.V.; Caruso, C.; Corsello, G. The use of social media in children and adolescents: Scoping review on the potential risks. Int. J. Environ. Res. Public Health 2022, 19, 9960. [CrossRef] [PubMed]. [Google Scholar]
  2. P. Nagaraj, Dr. M. Venkat Dass, E. Mahender “Breast Cancer Risk Detection Using XGB Classification Machine Learning Technique “, IEEE International Conference on Current Development in Engineering and Technology (CCET)-2022, Sageuniversity, Bhopal, India, 23-24, Dec 2022. [Google Scholar]
  3. Vyawahare, M., & Chatterjee, M., (2020), “Taxonomy of cyberbullying detection and prediction techniques in online social networks”, In L. C. Jain, G. A. Tsihrintzis, V. E. Balas, and D. Sharma (Eds.), Data communication and networks (pp. 21–37). Springer. https://doi.org/10.1007/978-981-15-0132-6_3. [Google Scholar]
  4. Chen, J., Yan, S., & Wong, K.-C., (2018), “Verbal aggression detection on Twitter comments: convolutional neural network for short-text sentiment analysis”, Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3442-0. [Google Scholar]
  5. S. Hnduja and J. W. Patchin “Cyberbullying: Identification, Prevention, & Response,”Cyberbullying Res. Cent, no. October, pp. 1-9,2018. [Google Scholar]
  6. Dr. Vijayakumar V and Dr Hari Prasad D, “Intelligent Chatbot Development for Text based Cyberbullying Prevention” International Journal of New Innovations in Engineering and Technology,2021. [Google Scholar]
  7. G. A. León-Paredes et al., Presumptive Detection of Cyberbullying on Twitter through Natural Language Processing and Machine Learning in the Spanish Language,CHILECON pp. 1-7, doi: 10.1109/CHILECON47746.2019.8987684. (2019). [Google Scholar]
  8. Murshed, A.H., Abawajy, J., Mallappa, S., Saif, M.A.N., Al-Ariki, H.D.E. (2022). DEA-RNN: A Hybrid Deep Learning Approach for Cyberbullying Detection in Twitter Social Media Platform. IEEE Access, 10: 25857 25871.https://doi.org/10.1109/ACCESS.2022.31536. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.