Open Access
Issue |
E3S Web of Conf.
Volume 508, 2024
International Conference on Green Energy: Intelligent Transport Systems - Clean Energy Transitions (GreenEnergy 2023)
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 13 | |
Section | IoT, AI and Data Analytics | |
DOI | https://doi.org/10.1051/e3sconf/202450803006 | |
Published online | 05 April 2024 |
- A. Poltorak, Yu. Volosyuk, S. Tyshchenko, O. Khrystenko, V. Ribachuk. Development of directions for improving the monitoring of the state economic security under conditions of global instability. Eastern-European Journal of Enterprise Technologies, 2(13-122), 17–27. doi: 10.15587/1729-4061.2022.253062. [Google Scholar]
- M. P. Clements, D. Hendry, Forecasting Economic Time Series. Journal of the American Statistical Association, 95 (450). DOI:10.1017/CBO9780511599286. (2000) [Google Scholar]
- M. P. Clements, D. Hendry, Forecasting economic processes. International Journal of Forecasting, 14, (1), 111-131. (1998) [CrossRef] [Google Scholar]
- F. Petropoulos, N. Kourentzes, K. Nikolopoulos, E. Siemsen, Judgmental selection of forecasting models, Journal of operations management, 60, (1), 34-46. https://doi.org/10.1016/j.jom.2018.05.005. (2018) [CrossRef] [Google Scholar]
- N. Kourentzes, G. Athanasopoulos, Elucidate structure in intermittent demand series, Department of Econometrics and Business Statistics, Monash University Working Paper 27, (19), 1-38. (2019) [Google Scholar]
- M. S. Othman, J. M. Ghadeer, A modified ARIMA model for forecasting chemical sales in the USA. Journal of Physics: Conference Series. doi:10.1088/1742-6596/1879/3/032008. (2021) [Google Scholar]
- M. H. Alsharif, M. K. Younes, J. Kim, Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation. Symmetry, 11, (240), https://doi.org/10.3390/sym11020240. (2019) [Google Scholar]
- A. B. Nashirah, R. Sofian, Autoregressive Integrated Moving Average (ARIMA) Model for Forecasting Cryptocurrency Exchange Rate in High Volatility Environment: A New Insight of Bitcoin Transaction. International Journal of Advanced Engineering Research and Science (IJAERS), 4. DOI:10.22161/ijaers.4.11.20. (2017) [Google Scholar]
- M. Bata, R. Carriveau, D. SK. Ting, Short-term water demand forecasting using hybrid supervised and unsupervised machine learning model. Smart Water 5, https://doi.org/10.1186/s40713-020-00020-y. (2020). [CrossRef] [Google Scholar]
- Ö. F. Durdu, A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence, 23, 586-594, https://doi.org/10.1016/j.engappai.2009.09.015. (2010) [CrossRef] [Google Scholar]
- J. Sun, Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models. Computer Methods and Programs in Biomedicine Update, 1. https://doi.org/10.1016/j.cmpbup.2021.100029. (2021) [Google Scholar]
- N. Zhu, W. Zhang, W. Wang, X. Li, A Novel Coronavirus from Patients with Pneumonia in China, New England Journal of Medicine, https://doi.org/10.1056/NEJMoa2001017. (2019) [Google Scholar]
- L. H. David, Data sharing and outbreaks: best practice exemplified. The Lancet, 469-470, https://doi.org/10.1016/S0140-6736(20)30184-7. (2020) [Google Scholar]
- Y. Wang, Z. Shen, Y. Jiang, Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS ONE, https://doi.org/10.1371/journal.pone.0201987. (2018) [Google Scholar]
- Q. Liu, Z. Li, Y. Ji, L. Martinez, U. H. Zia, A. Javaid, W. Lu, J. Wang, Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist, doi: 10.2147/IDR.S207809. (2019) [Google Scholar]
- L. Rubio, K. Alba, Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model. Mathematics, https://doi.org/10.3390/math10132181. (2022) [Google Scholar]
- G. Jung, S. Choi, Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques. Machine Learning Applications in Complex Economics and Financial Networks, https://doi.org/10.1155/2021/6647534. (2021) [Google Scholar]
- M. Tripathi, S. Kumar, S. Inani, Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications. Journal of Time Series Econometrics, 43-71. https://doi.org/10.1515/jtse-2020-0013. (2021) [Google Scholar]
- H. Wei, N. Yoshiteru, W. Shou-Yang, Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32, 2513-2522, https://doi.org/10.1016/j.cor.2004.03.016. (2005) [CrossRef] [Google Scholar]
- I. Kalinina, P. Bidyuk, A. Gozhyj, P. Malchenko, Combining forecasts based on time series models in machine learning tasks, CEUR Workshop Proceedings, 3426, 25–35, http://www.scopus.com/inward/record.url?eid=2-s2.0-85164941212&partnerID=MN8TOARS (2023) [Google Scholar]
- H. C. Serena, J. J. Anthony, P. N. John, Artificial Intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, 78, 379-400, https://doi.org/10.1016/j.matcom.2008.01.028. (2008) [CrossRef] [Google Scholar]
- A. Dehghan, N. Khanjani, A. Bahrampour, The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models. BMC Pulm Med, 18, https://doi.org/10.1186/s12890-018-0613-9. (2018) [CrossRef] [Google Scholar]
- K. Ravindra, Emission of black carbon from rural households kitchens and assessment of lifetime excess cancer risk in villages of North India. Environment International, 122, 201-212 https://doi.org/10.1016/j.envint.2018.11.008. (2019) [CrossRef] [Google Scholar]
- G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning. Springer New York, 607, https://doi.org/10.1007/978-1-0716-1418-1. (2021) [Google Scholar]
- S.N. Wood, Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, https://doi.org/10.1201/9781420010404. (2006) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.