Open Access
Issue |
E3S Web of Conf.
Volume 508, 2024
International Conference on Green Energy: Intelligent Transport Systems - Clean Energy Transitions (GreenEnergy 2023)
|
|
---|---|---|
Article Number | 04014 | |
Number of page(s) | 10 | |
Section | Mathematical Physics and Mathematics | |
DOI | https://doi.org/10.1051/e3sconf/202450804014 | |
Published online | 05 April 2024 |
- J. Albert, Bayesian Computation with R. Springer, New York. (2009) [CrossRef] [Google Scholar]
- T. Andersen, T. Bollerslev, Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance 4, 115-158 (1997) [CrossRef] [Google Scholar]
- J. Arteche, Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. Journal of Econometrics 119: 131-154 (2004) [CrossRef] [Google Scholar]
- L. Bisaglia, S. Bordignon, F. Lisi, k-factor garma models for intraday volatility forecasting. Applied Economics Letters 10: 251-254 (2003) [CrossRef] [Google Scholar]
- F.J. Breidt, N. Crato, P. de Lima, On the detection and estimation of long memory in stochastic volatility. Journal of Econometrics 83: 325-348 (1998) [CrossRef] [Google Scholar]
- T. Bollerslev, H.O. Mikkelsen, Modeling and pricing long memory in stock market volatility. Journal of Econometrics 73: 151-184 (1996) [CrossRef] [Google Scholar]
- R. Deo, C. Hurvich, On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models. Econometric Theory 17: 686-710 (2001) [CrossRef] [Google Scholar]
- R. Deo, C. Hurvich, Y. Lu, Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment. Journal of Econometrics 131: 29-58 (2006) [CrossRef] [Google Scholar]
- A. Gonzaga, A. Kawanaka, Asymptotic Decorrelation of Between-Scale Wavelet Coefficients of Generalized Fractional Process. Digital Signal Processing 16: 320-329 (2006) [CrossRef] [Google Scholar]
- A. Gonzaga, M. Hauser, A wavelet Whittle estimator of generalized long-memory stochastic volatility. Statistical Methods and Applications 20(1): 23-48 (2011) [CrossRef] [Google Scholar]
- A. Gonzaga, Forecasting long-memory stochastic volatility. International Journal of Applied Mathematics and Statistics 51(21): 195-2004 (2013) [Google Scholar]
- A. Gonzaga, A. Kawanaka, Wavelet-based Estimation of Generalized Fractional Process, Methods of Information in Medicine 46, 2, 117-120 (2007) [CrossRef] [PubMed] [Google Scholar]
- A. Gonzaga, A. Kawanaka, Wavelet-based Bayesian Analysis of Generalized Long-memory Processes, IEEE Xplore: Proceedings of 2005 IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 4, pp. 309-312 (2005) [CrossRef] [Google Scholar]
- A. Gonzaga, Asymptotic Decorrelation of Discrete Wavelet Packet Transform of Generalized Long-memory Stochastic Volatility, The Philippine Statistician 66(2), 1-20 (2017) [Google Scholar]
- A. Gonzaga, Estimation of Long-memory Stochastic Volatility for High-frequency Data, International Journal of Applied Engineering Research 12(9), 1888-1892 (2017) [CrossRef] [Google Scholar]
- A. Gonzaga, Seasonal Long-memory Stochastic Volatility, American Institute of Physics Conference Proceedings 1558, 2410-2413 (2013) [Google Scholar]
- A. Gonzaga, A. Kawanaka, Wavelet-based Bayesian Analysis of Generalized Fractional Process, Journal of Signal Processing 10, 3, 199-205 (2006) [Google Scholar]
- A. Harvey, Long memory in stochastic volatility. In: Knight J, Satchell S (Eds.) Forecasting Volatility in Financial Markets. Butterworth-Heineman, Oxford, pp. 307-320 (1998) [Google Scholar]
- M. Jensen, Semiparametric Bayesian Inference of Long-memory stochastic volatility models. Journal of Time Series Analysis 25(6): 895-122 (2004) [CrossRef] [Google Scholar]
- Y. Kamarianakis, P. Prastacos, Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Journal of the Transportation Resarch Board 1857: 74-84 (2003) [CrossRef] [Google Scholar]
- C. Ting, (2014) Artifact removal from single-trial ERP’s using non-Gaussian stochastic volatility models and particle filter. IEEE Signal Processing Letters 21(8): 923-927. [CrossRef] [Google Scholar]
- T. Tsekeris, A. Stathopoulos, Short-term prediction of urban traffic variability: stochastic volatility modeling approach. Journal of Transportation Engineering 136: 146-156 (2010) [Google Scholar]
- P. Wang, Financial Econometrics (2nd Edition).Routledge, New York (2009) [Google Scholar]
- W. Woodward, Q. Cheng, H. Gray, A k-factor GARMA Long-memory model. Journal of Time Series Analysis 19(4): 485-504 (1998) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.