Open Access
Issue |
E3S Web Conf.
Volume 509, 2024
2nd International Conference on Sustainable Nanotechnology & Nanomaterials (ICONN-2023)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 19 | |
Section | Nanobiotechnology and Biological Applications | |
DOI | https://doi.org/10.1051/e3sconf/202450902005 | |
Published online | 08 April 2024 |
- P. M. Moyle, “Progress in Vaccine Development,” Curr. Protoc. Microbiol., vol. 36, no. 1, pp. 18.1.1–18.1.26, Feb. 2015, doi: 10.1002/9780471729259.MC1801S36. [CrossRef] [PubMed] [Google Scholar]
- A. C.-J. of global infectious diseases and undefined 2011, “Fundamentals of vaccine immunology,” journals.lww.com, Accessed: Mar. 21, 2024. [Online]. Available: https://journals.lww.com/jgid/fulltext/2011/03010/Fundamentals_of_Vaccine_Imm unology.13.aspx [Google Scholar]
- B. Zhang et al., “mRNA booster vaccination enhances antibody responses against SARS-CoV2 Omicron variant in individuals primed with mRNA or inactivated virus vaccines,” mdpi.comB Zhang, J Huo, Y Huang, SY Teo, K Duan, Y Li, LK Toh, KP Lam, S XuVaccines, 2022•mdpi.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.mdpi.com/2076-393X/10/7/1057 [Google Scholar]
- I. Hajj Hussein et al., “Vaccines Through Centuries: Major Cornerstones of Global Health,” Front. Public Heal., vol. 3, p. 167945, Nov. 2015, doi: 10.3389/FPUBH.2015.00269/BIBTEX. [Google Scholar]
- R. Pati, M. Shevtsov, and A. Sonawane, “Nanoparticle vaccines against infectious diseases,” Front. Immunol., vol. 9, no. OCT, Oct. 2018, doi: 10.3389/FIMMU.2018.02224. [CrossRef] [Google Scholar]
- D. Yadav, N. Yadav, S. K.-A. biotechnology, and undefined 2020, “Vaccines: present status and applications,” Elsevier, Accessed: Mar. 21, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128117101000240 [Google Scholar]
- V. Vetter, G. Denizer, L. R. Friedland, J. Krishnan, and M. Shapiro, “Understanding modern-day vaccines: what you need to know,” Ann. Med., vol. 50, no. 2, pp. 110–120, Feb. 2018, doi: 10.1080/07853890.2017.1407035. [CrossRef] [PubMed] [Google Scholar]
- T. Velikova and T. Georgiev, “SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis,” Rheumatol. Int., vol. 41, no. 3, pp. 509–518, Mar. 2021, doi: 10.1007/S00296-021-04792-9. [CrossRef] [PubMed] [Google Scholar]
- G. Forni, A. M.-C. D. & Differentiation, and undefined 2021, “COVID-19 vaccines: where we stand and challenges ahead,” nature.comG Forni, A Mantov. Death Differ. 2021•nature.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.nature.com/articles/s41418-020-00720-9 [Google Scholar]
- O. J. Wouters et al., “Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment,” Lancet, vol. 397, no. 10278, pp. 1023–1034, Mar. 2021, doi: 10.1016/S0140-6736(21)003068/ATTACHMENT/414172BD-59F4-4348-B632-944257A3BAA4/MMC3.PDF. [CrossRef] [PubMed] [Google Scholar]
- A. Kursat Azkur et al., “Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19,” Wiley Online Libr., vol. 75, no. 7, pp. 1564–1581, Jul. 2020, doi: 10.1111/all.14364. [Google Scholar]
- A. K. Azkur et al., “Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19,” Allergy, vol. 75, no. 7, pp. 1564–1581, Jul. 2020, doi: 10.1111/ALL.14364. [CrossRef] [PubMed] [Google Scholar]
- B. Donaldson, Z. Lateef, G. F. Walker, S. L. Young, and V. K. Ward, “Virus-like particle vaccines: immunology and formulation for clinical translation,” Expert Rev. Vaccines, vol. 17, no. 9, pp. 833–849, Sep. 2018, doi: 10.1080/14760584.2018.1516552. [CrossRef] [PubMed] [Google Scholar]
- S. Nooraei et al., “Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers,” J. Nanobiotechnology, vol. 19, no. 1, Dec. 2021, doi: 10.1186/S12951-021-00806-7. [CrossRef] [Google Scholar]
- A. Naskalska, K. P.-P. journal of microbiology, and undefined 2015, “Virus like particles as immunogens and universal nanocarriers,” ruj.uj.edu.plA Naskalska, K PyrćPolish J. Microbiol. 2015•ruj.uj.edu.pl, Accessed: Mar. 21, 2024. [Online]. Available: https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/20711/naskalska_pyrc_virus_like_ particles_as_immunogens_2015.pdf?sequence=1&isAllowed=y [Google Scholar]
- K. U. Jansen, W. C. Gruber, R. Simon, J. Wassil, and A. S. Anderson, “The impact of human vaccines on bacterial antimicrobial resistance. A review,” Environ. Chem. Lett., vol. 19, no. 6, pp. 4031–4062, Dec. 2021, doi: 10.1007/S10311-021-01274-Z. [CrossRef] [PubMed] [Google Scholar]
- M. Kim et al., “Reprogramming the tumor microenvironment with biotechnology,” spj.science.org, vol. 27, no. 1, p. 5, Dec. 2023, doi: 10.1186/s40824-023-00343-4. [Google Scholar]
- L. Meng et al., “Pharmacologic therapies of ARDS: From natural herb to nanomedicine,” Front. Pharmacol., vol. 13, p. 930593, Oct. 2022, doi: 10.3389/FPHAR.2022.930593/BIBTEX. [Google Scholar]
- E. Charani et al., “Optimising antimicrobial use in humans – review of current evidence and an interdisciplinary consensus on key priorities for research,” Lancet Reg. Heal. Eur., vol. 7, p. 100161, Aug. 2021, doi: 10.1016/j.lanepe.2021.100161. [CrossRef] [Google Scholar]
- M. Anwarul et al., “Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health,” Taylor Fr. Majumder, S Rahman, D Cohall, A Bharatha, K Singh, M Haque, M Gittens-St HilaireInfection drug Resist. 2020•Taylor Fr., vol. 13, pp. 4713–4738, 2020, doi: 10.2147/IDR.S290835. [Google Scholar]
- J. P. Sevilla, D. E. Bloom, D. Cadarette, M. Jit, and M. Lipsitch, “Toward economic evaluation of the value of vaccines and other health technologies in addressing AMR,” Natl. Acad Sci. Sevilla, Bloom. D Cadarette, M Jit, M LipsitchProceedings Natl. Acad. Sci. 2018•National Acad Sci., vol. 115, no. 51, pp. 12911–12919, Dec. 2018, doi: 10.1073/pnas.1717161115. [Google Scholar]
- B. Standaert et al., “How to assess for the full economic value of vaccines? From past to present, drawing lessons for the future,” mdpi.comB Standaert, C Sauboin, R DeAntonio, A Marijam, J Gomez, L Varghese, S ZhangJournal Mark. access Heal. policy, 2020•mdpi.com, 2020, doi: 10.1080/20016689.2020.1719588. [Google Scholar]
- R. F. Arthur, E. S. Gurley, H. Salje, L. S. P. Bloomfield, and J. H. Jones, “Global investments in Tuberculosis research and development: past, present and future. A policy paper prepared for the first WHO global ministerial conference on ending tuberculosis in the sustainable development era: a multisectoral response.,” Philos. Trans. R. Soc. B Biol. Sci., vol. 372, no. 1719, Mar. 2017, doi: 10.1098/RSTB.2016.0454. [Google Scholar]
- S. C. Davies and C. Oxlade, “Innovate to secure the future: the future of modern medicine,” Futur. Healthc. J., vol. 8, no. 2, p. e251, Jul. 2021, doi: 10.7861/FHJ.2021-0087. [CrossRef] [Google Scholar]
- N. A. Wilson et al., “Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus,” Am Soc MicrobiolNA Wilson, J Reed, GS Napoe, S Piaskowski, A Szymanski, J Furlott, EJ Gonzalez, LJ YantJournal Virol. 2006•Am Soc Microbiol, vol. 80, no. 12, pp. 5875–5885, Jun. 2006, doi: 10.1128/JVI.00171-06. [Google Scholar]
- A. Tunkel and W. Scheld, Bacterial meningitis. 2001. Accessed: Mar. 21, 2024. [Online]. Available: http://www.antimicrobe.org/e7.asp [Google Scholar]
- E. Sheldon et al., “A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults,” Vaccine, vol. 34, no. 18, pp. 2082–2091, Apr. 2016, doi: 10.1016/J.VACCINE.2016.03.010. [CrossRef] [PubMed] [Google Scholar]
- F. Micoli, F. Bagnoli, R. Rappuoli, D. S.-N. Reviews, and undefined 2021, “The role of vaccines in combatting antimicrobial resistance,” nature.comF Micoli, F Bagnoli, R Rappuoli, D SerrutoNature Rev. Microbiol. 2021•nature.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.nature.com/articles/s41579-020-00506-3/1000 [Google Scholar]
- S. W.-G. H. Action and undefined 2019, “Prevention of antibiotic resistance–an epidemiological scoping review to identify research categories and knowledge gaps,” Taylor Fr. WallGlobal Heal. Action, 2019•Taylor Fr., vol. 12, no. sup1, 2020, doi: 10.1080/16549716.2020.1756191. [Google Scholar]
- C. Varendh-Mansson, … T. W.-A. of M., and undefined 2020, “Anchors aweigh? Then time to head upstream: Why we need to theorize ‘mission’ before ‘drift,’” journals.aom.orgC Varendh-Mansson, T Wry, A SzafarzAcademy Manag. Rev. 2020•journals.aom.org, vol. 45, no. 1, pp. 230–234, 2020, doi: 10.5465/amr.2019.0081. [Google Scholar]
- J. P. Ferreira, D. Battaglia, A. D. G.Microorganisms, and undefined 2022, “Achieving antimicrobial stewardship on the global scale: challenges and opportunities,” mdpi.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.mdpi.com/2076-2607/10/8/1599 [Google Scholar]
- S. Sayed, W. Cherniak, M. Lawler, S. Tan, W. E. S.-T. Lancet, and undefined 2018, “Improving pathology and laboratory medicine in low-income and middle-income countries: roadmap to solutions,” thelancet.comS Sayed, W Cherniak, M Lawler, SY Tan, W El Sadr, N Wolf, S Silkensen, N Brand. LM LooiThe Lancet, 2018•thelancet.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)30459-8/fulltext?rss%3Dyes= [Google Scholar]
- S. P.-C. opinion in microbiology and undefined 2003, “Why is big Pharma getting out of antibacterial drug discovery?,” ElsevierSJ ProjanCurrent Opin. Microbiol. 2003•Elsevier, Accessed: Mar. 21, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1369527403001097 [Google Scholar]
- J. A. Marin-Acevedo, A. E. Soyano, B. Dholaria, K. L. Knutson, and Y. Lou, “Cancer immunotherapy beyond immune checkpoint inhibitors,” J. Hematol. Oncol., vol. 11, no. 1, Jan. 2018, doi: 10.1186/S13045-017-0552-6. [Google Scholar]
- “Vaccine antigens,” cyberleninka.orgR Strugnell, F Zepp, A Cunningham, T TantawichienPerspect Vaccinol, 2011•cyberleninka.org, Accessed: Mar. 21, 2024. [Online]. Available: https://cyberleninka.org/article/n/224662.pdf [Google Scholar]
- Z. Zhu, F. Antenucci, K. Villumsen, A. B.MBio, and undefined 2021, “Bacterial outer membrane vesicles as a versatile tool in vaccine research and the fight against antimicrobial resistance,” Am Soc MicrobiolZ Zhu, F Antenucci, KR Villumsen, AM BojesenMBio, 2021•Am Soc Microbiol, vol. 12, no. 4, 2021, doi: 10.1128/mBio.01707-21. [Google Scholar]
- I. M. Feavers and M. C. J. Maiden, “Recent progress in the prevention of serogroup B meningococcal disease,” Clin. Vaccine Immunol., vol. 24, no. 5, May 2017, doi: 10.1128/CVI.00566-16. [CrossRef] [Google Scholar]
- R. H. Fang et al., “Cell membrane coating nanotechnology,” Wiley Online Libr. Fang, AV Kroll, W Gao, L ZhangAdvanced Mater. 2018•Wiley Online Libr., vol. 30, no. 23, Jun. 2018, doi: 10.1002/adma.201706759. [Google Scholar]
- S. R.Cell and undefined 2007, “Development in motion: helper T cells at work,” cell.comSL ReinerCell, 2007•cell.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.cell.com/fulltext/S0092-8674(07)00382-0 [Google Scholar]
- R. Mostowy, K. H.-T. in microbiology, and undefined 2018, “Diversity-generating machines: genetics of bacterial sugar-coating,” cell.comRJ Most. KE HoltTrends Microbiol. 2018•cell.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.cell.com/trends/microbiology/fulltext/S0966-842X(18)30141-0 [Google Scholar]
- M. Bröker, P. Costantino, L. DeTora, E. M.Biologicals, and undefined 2011, “Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines,” Elsevier, Accessed: Mar. 21, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1045105611000650 [Google Scholar]
- H. Abdelzaher, A. Gabr, B. Saleh, R. A. G.Vaccines, and undefined 2021, “RNA vaccines against infectious diseases: vital progress with room for improvement,” mdpi.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.mdpi.com/2076-393X/9/11/1211 [Google Scholar]
- R. R. Goel et al., “Distinct antibody and memory B cell responses in SARSCoV-2 naïve and recovered individuals following mRNA vaccination,” Sci. Immunol., vol. 6, no. 58, pp. 1–19, Apr. 2021, doi: 10.1126/SCIIMMUNOL.ABI6950. [Google Scholar]
- J. Tang et al., “Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination,” Sci. Immunol., vol. 7, no. 76, Oct. 2022, doi: 10.1126/SCIIMMUNOL.ADD4853. [Google Scholar]
- M. C. Shamier et al., “Virological characteristics of SARS-CoV-2 vaccine breakthrough infections in health care workers,” medRxiv, p. 2021.08.20.21262158, Aug. 2021, doi: 10.1101/2021.08.20.21262158. [Google Scholar]
- R. R. Coutinho, “Exploring biomarkers from the tumour and the microenvironment in Diffuse Large B-cell Lymphoma.,” 2014, Accessed: Mar. 21, 2024. [Online]. Available: https://qmro.qmul.ac.uk/xmlui/handle/123456789/9108 [Google Scholar]
- S. Xia, L. Wang, Y. Zhu, L. Lu, S. J.-S. T. and Targeted, and undefined 2022, “Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages,” nature.comS Xia, L Wang, Y Zhu, L Lu, S JiangSignal Transduct. Target. Ther. 2022•nature.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.nature.com/articles/s41392-022-01105-9 [Google Scholar]
- J. Monrad, J. Sandbrink, N. C. Vaccines, and undefined 2021, “Promoting versatile vaccine development for emerging pandemics,” nature.comJT Monrad, JB Sandbrink, NG Cheriannpj Vaccines, 2021•nature.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.nature.com/articles/s41541-021-00290-y [Google Scholar]
- I. Ielo, G. Rando, F. Giacobello, S. Sfameni, A. C.Molecules, and undefined 2021, “Synthesis, chemical–physical characterization, and biomedical applications of functional gold nanoparticles: A review,” mdpi.comI Ielo, G Rando, F Giacobello, S Sfameni, A Castellano, M Gall. D Drommi, G RosaceMolecules, 2021•mdpi.com, Accessed: Mar. 21, 2024. [Online]. Available: https://www.mdpi.com/1420-3049/26/19/5823 [Google Scholar]
- Y. Chan, S. Singh, M. Gulati, … S. W.-J. of D. D., and undefined 2022, “Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases,” Elsevier, Accessed: Mar. 21, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S177322472200452X [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.