Open Access
Issue
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
Article Number 01022
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202451101022
Published online 10 April 2024
  1. A. Öhman, E. Karakaya, and F. Urban, “Enabling the transition to a fossil-free steel sector: The conditions for technology transfer for hydrogen-based steelmaking in Europe,” Energy Research & Social Science, vol. 84, p. 102384, (2022). doi: https://doi.org/10.1016/j.erss.2021.102384 [CrossRef] [Google Scholar]
  2. F. Razi and I. Dincer, “Renewable energy development and hydrogen economy in MENA region: A review,” Renewable and Sustainable Energy Reviews, vol. 168, p. 112763, (2022). doi: https://doi.org/10.1016/j.rser.2022.112763 [CrossRef] [Google Scholar]
  3. V. Duc Bui et al., “Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy,” Sustainable Energy Technologies and Assessments, vol. 55, p. 102991, (2023). doi: https://doi.org/10.1016/j.seta.2022.102991 [CrossRef] [Google Scholar]
  4. S. K. Nayak, P. C. Mishra, S. Nanda, B. Nayak, and M. M. Noor, “Opportunities for Biodiesel Compatibility as a Modern Combustion Engine Fuel,” Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, pp. 457–476, (2020). doi: https://doi.org/10.1007/978-981-15-1804-1_19 [CrossRef] [Google Scholar]
  5. A. Çakmak, “Feasibility of Complete Substitution of Petroleum Diesel with Biofuels in Diesel Engines: An Experimental Assessment of Combustion, Performance, and Emissions Characteristics,” Arabian journal for science and engineering, pp. 1–21, (2023). doi: https://doi.org/10.1007/s13369-023-08252-3 [Google Scholar]
  6. A. Rezki, Y. Essamlali, M. Aadil, N. Semlal, and M. Zahouily, “Biodiesel production from rapeseed oil and low free fatty acid waste cooking oil using a cesium modified natural phosphate catalyst,” RSC Advances, vol. 10, no. 67, pp. 41065–41077, (2020). doi: https://doi.org/10.1039/D0RA07711A [CrossRef] [PubMed] [Google Scholar]
  7. S. Kumar and A. Yadav, “Comparative experimental investigation of preheated thumba oil for its performance testing on a CI engine,” Energy & Environment, vol. 29, no. 4, pp. 533–542, (2018). doi: https://doi.org/10.1177/0958305x17753834 [CrossRef] [Google Scholar]
  8. K. T. Tan, K. T. Lee, and A. R. Mohamed, “Potential of waste palm cooking oil for catalystfree biodiesel production,” Energy, vol. 36, no. 4, pp. 2085–2088, (2011). doi: https://doi.org/10.1016/j.energy.2010.05.003 [CrossRef] [Google Scholar]
  9. V. Vijay, S. L. Pimm, C. N. Jenkins, and S. J. Smith, “The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss,” PLOS One, vol. 11, no. 7, p. e0159668, (2016). doi: https://doi.org/10.1371/journal.pone.0159668 [CrossRef] [PubMed] [Google Scholar]
  10. A. Yadav, “Biofuel from waste cooking oil of hospitality laboratory,” Materials Today: Proceedings, pp. 2121–2123, (2021). doi: https://doi.org/10.1016/j.matpr.2021.12.048 [Google Scholar]
  11. S. Nisar, M. A. Hanif, U. Rashid, A. Hanif, M. N. Akhtar, and C. Ngamcharussrivichai, “Trends in Widely Used Catalysts for Fatty Acid Methyl Esters (FAME) Production: A Review,” Catalysts, vol. 11, no. 9, p. 1085, (2021). doi: https://doi.org/10.3390/catal11091085 [CrossRef] [Google Scholar]
  12. J. S. J. Ling, Y. H. Tan, N. M. Mubarak, J. Kansedo, A. Saptoro, and C. Nolasco-Hipolito, “A review of heterogeneous calcium oxide based catalyst from waste for biodiesel synthesis,” SN Applied Sciences, vol. 1, no. 8, (2019). doi: https://doi.org/10.1007/s42452-019-0843-3 [Google Scholar]
  13. J. I. Orege et al., “Recent advances in heterogeneous catalysis for green biodiesel production by transesterification,” Energy Conversion and Management, vol. 258, p. 115406, (2022). doi: https://doi.org/10.1016/j.enconman.2022.115406 [CrossRef] [Google Scholar]
  14. M. Mulyatun, J. Prameswari, I. Istadi, and W. Widayat, “Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: A review,” Fuel, vol. 314, p. 122749, (2021). doi: https://doi.org/10.1016/j.fuel.2021.122749 [Google Scholar]
  15. W. Abdussalam-Mohammed, “Comparison of Chemical and Biological Properties of Metal Nanoparticles (Au, Ag), with Metal Oxide Nanoparticles (ZnO-NPs) and their Applications,” Advanced Journal of Chemistry-Section A, vol. 3, no. 2, pp. 192–210, (2020). doi: https://doi.org/10.33945/sami/ajca.2020.2.8 [CrossRef] [Google Scholar]
  16. M. J. Ndolomingo, N. Bingwa, and R. Meijboom, “Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts,” Journal of Materials Science, vol. 55, no. 15, pp. 6195–6241, (2020). doi: https://doi.org/10.1007/s10853-020-04415-x [CrossRef] [Google Scholar]
  17. V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin, “Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review,” Nanotechnology for Environmental Engineering, vol. 8, no. 2, (2022). doi: https://doi.org/10.1007/s41204-022-00276-8 [Google Scholar]
  18. S. Jadoun, R. Arif, N. K. Jangid, and R. K. Meena, “Green synthesis of nanoparticles using plant extracts: a review,” Environmental Chemistry Letters, vol. 19, (2020). doi: https://doi.org/10.1007/s10311-020-01074-x [Google Scholar]
  19. M. F. Sohail et al., “Green synthesis of zinc oxide nanoparticles by Neem extract as multifacet therapeutic agents,” Journal of Drug Delivery Science and Technology, vol. 59, p. 101911, (2020). doi: https://doi.org/10.1016/j.jddst.2020.101911 [CrossRef] [Google Scholar]
  20. R. Manimaran, “Optimization of Azadirachta indica leaf extract mediated cerium oxide nanoparticles synthesis, characterization, and its applications,” Industrial Crops and Products, vol. 204, p. 117304, (2023). doi: https://doi.org/10.1016/j.indcrop.2023.117304 [CrossRef] [Google Scholar]
  21. A. Murugesan, R. Prakash, and A. Kumaravel, “An Experimental Investigation on DI-CI Engine Characteristics Fueled with Green Synthesized Nanoparticle Doped with Biodiesel Blends,” Lecture notes in mechanical engineering, pp. 285–302, (2020). doi: https://doi.org/10.1007/978-981-15-5996-9_22 [Google Scholar]
  22. A. D. Sontakke, P. Mondal, and Mihir Kumar Purkait, “Green Synthesis of Metallic Nanoparticles for Biofuel Production,” Clean Energy Production Technologies, pp. 51–77, (2022). doi: https://doi.org/10.1007/978-981-16-9356-4_3 [CrossRef] [Google Scholar]
  23. S. Amin, “Review on biofuel oil and gas production processes from microalgae,” Energy Conversion and Management, vol. 50, no. 7, pp. 1834–1840, (2019). doi: https://doi.org/10.1016/j.enconman.2009.03.001 [CrossRef] [Google Scholar]
  24. T. E. Agustina, W. Handayani, and C. Imawan, “The UV-VIS Spectrum Analysis From Silver Nanoparticles Synthesized Using Diospyros maritima Blume. Leaves Extract,” Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020), pp. 411–419, (2021). doi: https://doi.org/10.2991/absr.k.210621.070 [Google Scholar]
  25. C. Mohan, V. Chugh, G. Pandey, “Heterocyclic compounds of thiazoles as important material in medicinal chemistry” Materials Today: Proceedings, vol. 69, pp 478–481, (2022). doi: 10.1016/j.matpr.2022.09.150 [Google Scholar]
  26. A. M. Soliman, W. Abdel-Latif, I. H. Shehata, A. Fouda, A. M. Abdo, and Y. M. Ahmed, “Green Approach to Overcome the Resistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9,” Biological Trace Element Research, vol. 199, no. 2, pp. 800–811, (2020). doi: https://doi.org/10.1007/s12011-020-02188-7 [Google Scholar]
  27. M. Ghashghaee, M. Fallah, and A. Rabiee, “Superhydrophobic nanocomposite coatings of poly(methyl methacrylate) and stearic acid grafted CuO nanoparticles with photocatalytic activity,” Progress in Organic Coatings, vol. 136, p. 105270, (2019). doi: https://doi.org/10.1016/j.porgcoat.2019.105270 [CrossRef] [Google Scholar]
  28. N. Sharma Dugala, G. Singh Goindi, and A. Sharma, “Evaluation of physicochemical characteristics of Mahua (Madhuca indica) and Jatropha (Jatropha curcas) dual biodiesel blends with diesel,” Journal of King Saud University Engineering Sciences, vol. 33, no. 6, pp. 424–436, (2021). doi: https://doi.org/10.1016/j.jksues.2020.05.006 [CrossRef] [Google Scholar]
  29. Babita, V. Singh and C. Mohan, “Plant-derived compounds and their green synthesis in pharmaceuticals and nutraceuticals”, Elsevier Publishing, pp 149–163, (2024). doi : 10.1016/B978-0-443-18959-3.00001-X [Google Scholar]
  30. A Arun Shankar, Prudhvi Raj Pentapati, and R. Krishna Prasad, “Biodiesel synthesis from cottonseed oil using homogeneous alkali catalyst and using heterogeneous multi walled carbon nanotubes: Characterization and blending studies,” Egyptian Journal of Petroleum, vol. 26, no. 1, pp. 125–133, (2017). doi: https://doi.org/10.1016/j.ejpe.2016.04.001 [CrossRef] [Google Scholar]
  31. A. Rafati, K. Tahvildari, and M. Nozari, “Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 41, no. 9, pp. 1062–1074, (2018). doi: https://doi.org/10.1080/15567036.2018.1539139 [Google Scholar]
  32. C. Mohan, N. Kumari, Sushma, A. Yadav, V. K. Garg, “Introduction to environmental and green chemistry”, Elsevier Publishing, pp 1–22, (2024). doi : 10.1016/B978-0-443-189593.00005-7 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.