Open Access
Issue
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
Article Number 01027
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202451101027
Published online 10 April 2024
  1. Shaker, L.M., Al-Amiery, A.A. & Al-Azzawi, W.K. Nanomaterials: paving the way for the hydrogen energy frontier. Discover Nano 19. 3, (2024). https://doi.org/10.1186/s11671-023-03949-8 [CrossRef] [Google Scholar]
  2. Zhang, Boxue, Shengxin Cao, Meiqi Du, Xiaozhou Ye, Yun Wang, and Jianfeng Ye. Titanium Dioxide (TiO2) Mesocrystals: Synthesis, Growth Mechanisms and Photocatalytic Properties. Catalysts 9. no. 1 (91), (2019). https://doi.org/10.3390/catal9010091 [CrossRef] [Google Scholar]
  3. Anirban Chakraborty, Samriti, Olim Ruzimuradov, Raju Kumar Gupta, Junghyun Cho, Jai Prakash, TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environmental Research. Volume 212, Part D. 113550. (2022). https://doi.org/10.1016/j.envres.2022.113550. [CrossRef] [PubMed] [Google Scholar]
  4. Dharma HNC, Jaafar J, Widiastuti N, Matsuyama H, Rajabsadeh S, Othman MHD, Rahman MA, Jafri NNM, Suhaimin NS, Nasir AM, Alias NH. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes (Basel). Mar 19; 12(3):345, (2022). https://doi.org/10.3390/membranes12030345. [CrossRef] [PubMed] [Google Scholar]
  5. Surender, C. Mohan, R. Kumar, “Novel modification of activated charcoal sheet with N-methylpolypyrrole and silver nanoparticles for removal of hexavalent chromium in water treatment processes” Materials Protection, vol. 64, pp 503–511, (2023). doi : 10.5937/zasmat2304503S [CrossRef] [Google Scholar]
  6. Hamidi, F.; Aslani, F. TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials. 9. 1444. (2019). https://doi.org/10.3390/nano9101444. [CrossRef] [PubMed] [Google Scholar]
  7. Sakar, M.; Mithun Prakash, R.; Do, T.-O. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 9. 680. (2019). https://doi.org/10.3390/catal9080680. [CrossRef] [Google Scholar]
  8. D.A.H. Hanaor, M.H.N. Assadi, S. Li, A. Yu, and C.C. Sorrell, Computational Mechanics 50. (2). 185–194. (2012). https://arxiv.org/pdf/1210.7555.pdf. [CrossRef] [Google Scholar]
  9. C. Mohan, N. Kumari, J. Robinson, “Sustainable and environmental friendly energy materials” Materials Today: Proceedings, vol. 69, pp 494–498, (2022). doi : 10.1016/j.matpr.2022.09.187 [Google Scholar]
  10. Prasad, Tara and Shah, MC and Singh, Pankaja and Wani, Tanveer Ahmad, Ab-initio Calculations of Properties for NbB2 Under High-Pressure Using Quantum ESPRESSO. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur – India. February 26-28, (2019). http://dx.doi.org/10.2139/ssrn.3355175. [Google Scholar]
  11. Aschauer, U. & Selloni, A. Hydrogen interaction with the anatase TiO2 surface. Phys. Chem. Chem. Phys. 14, 16595–16602, (2012). https://doi.org/10.1039/C2CP42288C. [Google Scholar]
  12. Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 746–50. (2011). https://doi.org/10.1126/science.1200448. [CrossRef] [PubMed] [Google Scholar]
  13. Baohuan Wei, Monica Calatayud, Hydrogen activation on Anatase TiO2: Effect of surface termination, Catalysis Today, Volumes 397–399, Pages 113–120, ISSN 09205861. (2022). https://doi.org/10.1016/j.cattod.2021.11.020. [Google Scholar]
  14. Giannozzi, P., et al. Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter. 21, (2009). https://doi.org/10.1088/0953-8984/21/39/395502. [Google Scholar]
  15. P Giannozzi, O Andreussi, T Brumme, O Bunau, M Buongiorno Nardelli, M Calandra, R Car, C Cavazzoni, D Ceresoli, M Cococcioni M. Schlipf; A. P. Seitsonen; A. Smogunov; I. Timrov; T. Thonhauser; P. Umari; N. Vast; X. Wu & S. Baroni Advanced capabilities for materials modelling with Quantum ESPRESSO, Journal of Physics: Condensed Matter. 29 (46): 465901, (2017). https://doi.org/10.1088/1361-648X/aa8f79. [CrossRef] [PubMed] [Google Scholar]
  16. Hohenberg, P. and Kohn, W. Inhomogeneous Electron Gas. Physical Review B. 136. 864–871. (1964). http://dx.doi.org/10.1103/PhysRev.136.B864. [CrossRef] [Google Scholar]
  17. W. Kohn and L.J. Sham, Phys. Rev. A 140 1133, (1965). https://doi.org/10.1103/PhysRev.140.A1133. [CrossRef] [Google Scholar]
  18. Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1 July (2013). https://doi.org/10.1063/1.4812323. [Google Scholar]
  19. G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet and N. Marzari, npj Computational Materials 4. 72, (2018). http://materialscloud.org/sssp [Google Scholar]
  20. John D. Head, Michael C. Zerner, A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries, Chemical Physics Letters. Volume 12., Issue 3. 264–270, (1985). https://doi.org/10.1016/0009-2614(85)80574-1. [CrossRef] [Google Scholar]
  21. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 77. 3865 – Published 28 October 1996. Erratum Phys. Rev. Lett. 78, (1997) https://doi.org/10.1103/PhysRevLett.78.1396. [Google Scholar]
  22. Monkhorst, H.J. and Pack, J.D. Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5192, (1976). http://dx.doi.org/10.1103/PhysRevB.13.5188 [CrossRef] [Google Scholar]
  23. Satomichi Nishihara, BURAI, a GUI system of Quantum ESPRESSO (2018). https://burai.readthedocs.io/en/latest/ [Google Scholar]
  24. Andrea Dal Corso, thermo_pw: a Fortran driver for the parallel and/or automatic computation of materials properties that uses Quantum ESPRESSO (QE) routines as the underlying engine. https://dalcorso.github.io/thermo_pw/ [Google Scholar]
  25. D.A.H. Hanaor, W. Xu, M. Ferry, C.C. Sorrell, Abnormal grain growth of rutile TiO2 induced by ZrSiO4, book of Crystal Growth; Volume 359, 15 November. Pages 8391, (2012). https://doi.org/10.48550/arXiv.1303.2761. [Google Scholar]
  26. William R. Frensley, Chapter 1 Heterostructure and Quantum Well Physics, Editor(s): Norman G. Einspruch, William R. Frensley, VLSI Electronics Microstructure Science. Elsevie. Volume 24. Pages 1–24, (1994). https://doi.org/10.1016/B978-0-12-234124-3.50006-9. [CrossRef] [Google Scholar]
  27. Rangel T, Rignanese GM, Olevano V. Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis? Beilstein J Nanotechnol. Jun 2. 6. 1247–59, (2015). https://doi.org/10.3762/bjnano.6.128 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.