Open Access
Issue
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
Article Number 01030
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202451101030
Published online 10 April 2024
  1. Md.Z. ul Haq, H. Sood, R. Kumar, Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete. Mater. Today Proc., 69, 147–152 (2022). https://doi.org/10.1016/j.matpr.2022.08.233 [CrossRef] [Google Scholar]
  2. A. Kumar, N. Mathur, V. S. Rana, H. Sood, M. Nandal, Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete, Mater. Today Proc., (2022). https://doi.org/10.1016/j.matpr.2022.10.210 [Google Scholar]
  3. M. Nandal, H. Sood, P. K. Gupta, M. Z. U. Haq, Morphological and physical characterization of construction and demolition waste. Mater. Today Proc., (2022). https://doi.org/10.1016/j.matpr.2022.11.013 [Google Scholar]
  4. S. Kumar, A. Chopra, M. Z. U. Haq, Experimental investigation on marble dust, rice husk ash, and fly ash based geopolymer brick. Eur. Chem. Bull., 12, 4220–4229 (2023). [Google Scholar]
  5. V. S. Rana, Md.Z. ul Haq, N. Mathur, G. S. Khera, S. Dixit, S. Singh et al., Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector. Internat. J. Interact. Des. Manuf. 1–15 (2023). https://doi.org/10.1007/s12008-023-01456-9 [Google Scholar]
  6. Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, S. Dixit, Effect of Al2O3 nanoparticles on performance and emission characteristics of diesel engine fuelled with diesel–neem biodiesel blends. Sustainability, 14, 7913 (2022). doi: 10.3390/SU14137913. [CrossRef] [Google Scholar]
  7. L. Das, R. Nayak, K. S. Saxena, J. Nanda, S. P. Jena, D. S. Abdul Zehra, Determination of optimum machining parameters for face milling process of Ti6A14V metal matrix composite. Materials, 15, 4765 (2022). doi: 10.3390/MA15144765. [CrossRef] [PubMed] [Google Scholar]
  8. Y. Kuppusamy, R. Jayaseelan, G. Oandulu, S. V. Kumar, G. Murali, N. I. Vatin, Artificial neural network with a cross-validation technique to predict the material design of eco-friendly engineered geopolymer composites. Materials, 15, 3443 (2022). doi: 10.3390/MA15103443. [CrossRef] [PubMed] [Google Scholar]
  9. K. Zheng Yang, A. Pramanik, A. K. Basak, Y. Dong, C. Prakash, K. Kumar et al., Application of coolants during tool-based machining – A review. Ain Shams Engin. J., 14, 101830 (2022). doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  10. K. Kumar, S. Dixit, R. Arora, N. I. Vatin. J. Singh, D. Budhhi, et al., Comparative analysis of waste materials for their potential utilization in green concrete applications. Materials, 15, 4180 (2022). doi: 10.3390/MA15124180. [CrossRef] [PubMed] [Google Scholar]
  11. I. Almutairy, M. Alluhaidan. Fault diagnosis based approach to protecting dc microgrid using machine learning technique. Procedia Comput. Sci., 114, 449–456 (2017). doi: 10.1016/j.procs.2017.09.019. [CrossRef] [Google Scholar]
  12. A. Dutt, G. Karuna. machine learning approaches for fault detection in renewable microgrids. MATEC Web Con., 392, 01192 (2024). [CrossRef] [EDP Sciences] [Google Scholar]
  13. S. Dutta, S. K. Sahu, S. Dutta, B. Dey., Leveraging a micro synchrophasor for fault detection in a renewable based smart grid—A machine learned sustainable solution with cyber-attack resiliency. e-Prime – Advan. Elect. Engin. Elect. Energy, 2, (2022). doi: 10.1016/j.prime.2022.100090. [Google Scholar]
  14. M. Lei, M. Mohammadi. Hybrid machine learning based energy policy and management in the renewable-based microgrids considering hybrid electric vehicle charging demand. Internat. J. Elect. Power Energy Syst. 128, 106702 (2021). doi: 10.1016/j.ijepes.2020.106702. [CrossRef] [Google Scholar]
  15. R. Montoya, B. P. Poudel, A. Bidram, M. J. Reno. DC microgrid fault detection using multiresolution analysis of traveling waves. Internat. J. Elect. Power Energy Syst. 135, 107590 (2022). doi: 10.1016/j.ijepes.2021.107590. [CrossRef] [Google Scholar]
  16. D. G. Rosero, N. L. Díaz, C. L. Trujillo. Cloud and machine learning experiments applied to the energy management in a microgrid cluster. Appl. Energy, 304, 117770 (2021). doi: 10.1016/j.apenergy.2021.117770. [CrossRef] [Google Scholar]
  17. B. Deshmukh, D. Kumar Lal, S. Biswal. A reconstruction based adaptive fault detection scheme for distribution system containing AC microgrid. Internat. J. Elect. Power Energy Syst. 147, 108801, 2023, doi: 10.1016/j.ijepes.2022.108801. [CrossRef] [Google Scholar]
  18. R. K. Jalli, S. P. Mishra, P. K. Dash, J. Naik. Fault analysis of photovoltaic based DC microgrid using deep learning randomized neural network. Appl. Soft Comput. 126, 109314 (2022). doi: 10.1016/j.asoc.2022.109314. [CrossRef] [Google Scholar]
  19. M. Daisy, M. Hosseini Aliabadi, S. Javadi, H. Meyar Naimi. A robust transient and sustainable faults location approach for AC microgrid based on voltage and current difference measurements. Internat. J. Elect. Power Energy Syst. 153, 109343 (2023). doi: 10.1016/j.ijepes.2023.109343. [CrossRef] [Google Scholar]
  20. T. Tabassum, O. Toker, M. R. Khalghani. Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network. Appl. Energy 355, 122283 (2024). doi: 10.1016/j.apenergy.2023.122283. [CrossRef] [Google Scholar]
  21. T. Tabassum, S. Lim, M. R. Khalghani. Artificial intelligence-based detection and mitigation of cyber disruptions in microgrid control. Elect. Power Syst. Res. 226, 7644 (2024). doi: 10.1016/j.epsr.2023.109925. [CrossRef] [Google Scholar]
  22. A. G. Rameshrao, E. Koley, S. Ghosh. A LSTM-based approach for detection of high impedance faults in hybrid microgrid with immunity against weather intermittency and N-1 contingency. Renew. Energy, 198, 75–90 (2022). doi: 10.1016/j.renene.2022.08.028. [CrossRef] [Google Scholar]
  23. A. Srivastava, S. K. Parida. Data driven approach for fault detection and Gaussian process regression based location prognosis in smart AC microgrid. Elect. Power Syst. Res. 208, 107889 (2022). doi: 10.1016/j.epsr.2022.107889. [CrossRef] [Google Scholar]
  24. P. Pan and R. K. Mandal, “Learning approach based DC arc fault location classification in DC microgrids,” Electric Power Systems Research, vol. 208, Jul. 2022, doi: 10.1016/j.epsr.2022.107874. [Google Scholar]
  25. M. Uzair, L. Li, M. Eskandari, J. Hossain, J. G. Zhu. Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods. Ren. Sustain. Energy Rev. 178, 113228 (2023). doi: 10.1016/j.rser.2023.113228. [CrossRef] [Google Scholar]
  26. M. Daisy, M. Hosseini Aliabadi, S. Javadi, H. Meyar Naimi. Data-driven fault location approach in AC/DC microgrids based on fault voltage and current differences. Sustain. Energy, Grids Netw. 36, 101235 (2023). doi: 10.1016/j.segan.2023.101235. [CrossRef] [Google Scholar]
  27. R. Aiswarya, D. S. Nair, T. Rajeev, V. Vinod. A novel SVM based adaptive scheme for accurate fault identification in microgrid. Elect. Power Syst. Res. 221, 109439 (2023). doi: 10.1016/j.epsr.2023.109439. [CrossRef] [Google Scholar]
  28. M. Ahmadipour, M. M. Othman, R. Bo, Z. Salam, H. M. Ridha, K. Hasan. A novel microgrid fault detection and classification method using maximal overlap discrete wavelet packet transform and an augmented Lagrangian particle swarm optimization-support vector machine. Energy Rep. 8, 4854–4870 (2022). doi: 10.1016/j.egyr.2022.03.174. [CrossRef] [Google Scholar]
  29. P. K. Dash, S. Rekha Pattnaik, E. N.V.D.V. Prasad, R. Bisoi. Detection and classification of DC and feeder faults in DC microgrid using new morphological operators with multi class AdaBoost algorithm. Appl. Energy, 340, 121013, 2023, doi: 10.1016/j.apenergy.2023.121013. [CrossRef] [Google Scholar]
  30. A. Haque, V. S. B. Kurukuru, M. A. Khan, A. Malik, F. Fayaz. Centralized intelligent fault localization approach for renewable energy-based islanded microgrid systems. App. AI IOT Ren. Energy, 129–149 (2022). doi: 10.1016/B978-0-323-91699-8.00007-3. [Google Scholar]
  31. M. Y. Arafat, M. J. Hossain, M. M. Alam. Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects. Ren. Sustain. Energy Rev. 190, 114088 (2024). doi: 10.1016/j.rser.2023.114088. [CrossRef] [Google Scholar]
  32. K. Anjaiah, S. R. Pattnaik, P. K. Dash, R. Bisoi. A real-time DC faults diagnosis in a DC ring microgrid by using derivative current based optimal weighted broad learning system. Appl. Soft Comput. 142, 110334 (2023). doi: 10.1016/j.asoc.2023.110334. [CrossRef] [Google Scholar]
  33. S. Roy, S. Debnath. A wavelet based PSD approach for fault detection and classification in grid connected inverter interfaced microgrid. Measurement. 226, 114079 (2023). doi: 10.1016/j.measurement.2023.114079. [Google Scholar]
  34. R. Divya, S. Umamaheswari, A. A. Stonier. Machine learning based smart intrusion and fault identification (SIFI) in inverter based cyber-physical microgrids. Expert Syst. Appl. 238, 122291 (2024). doi: 10.1016/j.eswa.2023.122291. [CrossRef] [Google Scholar]
  35. R. Wazirali, E. Yaghoubi, M. S. S. Abujazar, R. Ahmad, A. H. Vakili. State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Elect. Power Syst. Res. 225, 109792 (2023). doi: 10.1016/j.epsr.2023.109792. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.