Open Access
Issue |
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
|
|
---|---|---|
Article Number | 01032 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/e3sconf/202451101032 | |
Published online | 10 April 2024 |
- Z. Tong, Y. Meng, J. Zhang, Z. Li, D. Wang, X. Li, G. Ou. Coal structure identification based on geophysical logging data: Insights from Wavelet Transform (WT) and Particle Swarm Optimization Support Vector Machine (PSO-SVM) algorithms. Int. J. Coal Geol. 282 104435 (2024). doi: 10.1016/j.coal.2023.104435. [CrossRef] [Google Scholar]
- Y. Zhang, W. Fan, Y. Zhao, C. Wen, Z. Lin, M. Qu. Layout optimization for underwater nozzle array of air-lifted artificial upwelling system based on discrete particle swarm algorithm. App. Ocean Res. 140 (2023). doi: 10.1016/j.apor.2023.103724. [Google Scholar]
- X. Wang, D. Yang, S. Chen. Particle swarm optimization based leaderfollower cooperative control in multi-agent systems. Appl. Soft Comput. 151, 111130 (2024). doi: 10.1016/j.asoc.2023.111130. [CrossRef] [Google Scholar]
- B. J. Solano-Rojas, R. Villalón-Fonseca, and R. Batres. Micro Evolutionary Particle Swarm Optimization (MEPSO): A new modified metaheuristic. Syst. Soft Comput. 5, 200057 (2023). doi: 10.1016/j.sasc.2023.200057. [CrossRef] [Google Scholar]
- G. R. Hecht, E. M. Botta. Particle Swarm Optimization-based co-state initialization for low-thrust minimum-fuel trajectory optimization. Acta Astronaut. 211, 416–430 (2023). doi: 10.1016/j.actaastro.2023.06.021. [CrossRef] [Google Scholar]
- Y. Zhang, X. Hou. Application of video image processing in sports action recognition based on particle swarm optimization algorithm. Prev. Med. (Baltim) 173, (2023) doi: 10.1016/j.ypmed.2023.107592. [Google Scholar]
- B. Sun, Y. Li, T. Guo. A particle swarm optimization and prior knowledge fusion seismic damage prediction of concrete structures. App. Soft Comp. 111552 (2024). https://doi.org/10.1016/j.asoc.2024.111552 [CrossRef] [Google Scholar]
- S. Tyagi, P. Kumar Singh, A. Kumar Tiwari. Advancements in performance of zinc oxide/carbon quantum dots based photovoltaic trigeneration system using genetic algorithm and particle swarm optimization. Sustain. Energy Tech. Assess. 60, 103501 (2023). doi: 10.1016/j.seta.2023.103501. [Google Scholar]
- K. Bala, G. Arora, H. Emadifar, M. Khademi. Applications of particle swarm optimization for numerical simulation of Fisher’s equation using RBF. Alex. Engin. J. 84, 316–322 (2023). doi: 10.1016/j.aej.2023.11.024. [CrossRef] [Google Scholar]
- X. Wang, R. Ma, W. Huo, Z. Zhang, J. He, C. Zhang, D. Tian. SYNTONY: Potential-aware fuzzing with particle swarm optimization. J. Syst. Softw. 208, (2024). doi: 10.1016/j.jss.2023.111880. [Google Scholar]
- X. Yang, H. Li. Evolutionary-state-driven multi-swarm cooperation particle swarm optimization for complex optimization problem. Inf. Sci. (N Y) 646, (2023). doi: 10.1016/j.ins.2023.119302. [Google Scholar]
- J. Vicente-Martínez, M. Á. Bonmatí-Carrión, J. A. Madrid, M. A. Rol. Uncovering personal circadian responses to light through particle swarm optimization. Comput. Methods Programs Biomed. 243, (2024). doi: 10.1016/j.cmpb.2023.107933. [Google Scholar]
- M. Shojaee, S. Noori, S. Jafarian-Namin, A. Johannssen. Integration of Production–Maintenance Planning and Monitoring Simple Linear Profiles via Hotelling’s T2 control chart and Particle Swarm Optimization. Comput. Ind. Eng. 109864 (2023). doi: 10.1016/j.cie.2023.109864. [Google Scholar]
- T. Tao, L. Hua. Decoupling control of bearingless brushless DC motor using particle swarm optimized neural network inverse system. Measur. Sensors 31 (2024). doi: 10.1016/j.measen.2023.100952. [Google Scholar]
- B. Han, B. Li, C. Qin. A novel hybrid particle swarm optimization with marine predators. Swarm. Evol. Comput. 83, (2023). doi: 10.1016/j.swevo.2023.101375. [Google Scholar]
- H. Qin, W. Zhang, H. Zhai. Cooperative control of multiple intersections combining agent and chaotic particle swarm optimization. Comp. Elect. Engin. 110, (2023). doi: 10.1016/j.compeleceng.2023.108875. [Google Scholar]
- S. Zheng, Q. Pan, D. He, X. Liu. Reactor lightweight shielding optimization method based on parallel embedded genetic particle-swarm hybrid algorithm. Prog. Nuc. Energy 168, 105040 (2024). doi: 10.1016/j.pnucene.2023.105040. [CrossRef] [Google Scholar]
- R. Prasad Parouha. Non-smooth/non-convex economic dispatch through modified particle swarm optimization. Mater. Today Proc. (2023). doi: 10.1016/j.matpr.2023.08.365. [Google Scholar]
- X. Wang, Z. Yang, G. Chen, Y. Liu. Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning. Appl. Math Comput. 469, (2024). doi: 10.1016/j.amc.2024.128534. [Google Scholar]
- Y. Zhang, B. Li, W. Hong, A. Zhou. MOCPSO: A multi-objective cooperative particle swarm optimization algorithm with dual search strategies. Neurocomputing 562 (2023). doi: 10.1016/j.neucom.2023.126892. [Google Scholar]
- K. S. Bhuvaneshwari, L. Rama Parvathy, K. Chatrapathy, C. V. Krishna Reddy. An internet of health things-driven skin cancer classification using progressive cyclical convolutional neural network with ResNexT50 optimized by exponential particle swarm optimization. Biomed. Signal Process. Control. 91, (2024). doi: 10.1016/j.bspc.2023.105878. [CrossRef] [Google Scholar]
- G. Yang, W. Li, W. Xie, L. Wang, K. Yu. An improved binary particle swarm optimization algorithm for clinical cancer biomarker identification in microarray data. Comput. Methods Programs Biomed. 244, 107987 (2024). doi: 10.1016/j.cmpb.2023.107987. [CrossRef] [Google Scholar]
- Surender, C. Mohan, R. Kumar, “Novel modification of activated charcoal sheet with N-methylpolypyrrole and silver nanoparticles for removal of hexavalent chromium in water treatment processes” Materials Protection, vol. 64, pp 503–511, (2023). doi : 10.5937/zasmat2304503S [CrossRef] [Google Scholar]
- P. Kumari, N. Kumari, C. Mohan, C. Chinglenthoiba, K.T.T. Amesho, “Environmentally Benign Approach to Formulate Nanoclay/Starch hydrogel for Controlled Release of Zinc and Its Application in Seed Coating of Oryza Sativa Plant” International Journal of Biological Macromolecules, vol. 257, pp 128278, (2023). doi: 10.1016/j.ijbiomac.2023.128278 [Google Scholar]
- Q. Gao, H. Sun, and Z. Wang. DP-EPSO: Differential privacy protection algorithm based on differential evolution and particle swarm optimization. Opt. Laser Technol. 173, (2024). doi: 10.1016/j.optlastec.2023.110541. [Google Scholar]
- M. Z. ul Haq, H. Sood, R. Kumar, S. J. Kumar, V. M. Reddy, M. Gupta, P. Samyuktha, K. Kumar. Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste. E3S Web of Conf. 430, 01203 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- K. Kumar. S. Dixit, Md.Z. Ul Haq, V. K. Maksudovna, N. I. Vatin, M. Rekha, V. K. Awaar, A. Singla, S. Jhade. Revolutionising Heat Treatment: Novel Strategies for Augmented Performance and Sustainability. E3S Web of Conf. 430, 01200 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- K. Kumar. S. Dixit, Md.Z. Ul Haq, V. K. Maksudovna, N. I. Vatin, D. S. Malleswara Rao, V. K. Awaar, G. Nijhawan. Exploring the Uncharted Territory: Future Generation Materials for Sustainable Energy Storage. E3S Web of Conf. 430, 01199 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- K. Kumar S. Dixit, Md.Z. Ul Haq, V. K. Maksudovna, S. K. Tummala, P. B. Bobba, S. Chhabra, D. Khatua. Breaking Barriers: Innovative Fabrication Processes for Nanostructured Materials and Nano Devices. E3S Web of Conf. 430, 01197 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- K. Kumar. Understanding Composites and Intermetallic: Microstructure, Properties, and Applications. E3S Web of Conf. 430, 01196 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- H. D. Nguyen A. Pramanik, A. K. Basak, Y. Dong, D, Budhhi. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J. Mater. Res. Tech. 18, 4641–4661 (2022). doi: 10.1016/J.JMRT.2022.04.055. [CrossRef] [Google Scholar]
- D. Aghimien, N. Ngcobo, C. Aigbavboa, S. Dixit, N. I. Vatin, G. S. Khera. Barriers to Digital Technology Deployment in Value Management Practice. Buildings 12 (2022). doi: 10.3390/BUILDINGS12060731. [CrossRef] [Google Scholar]
- A. Saini, G. Singh, S. Mehta, H. Singh, S. Dixit. A review on mechanical behaviour of electrodeposited Ni-composite coatings. Internat. J. Interact. Design Manuf. (2022). doi: 10.1007/S12008-022-00969-Z. [Google Scholar]
- M. Arora, A. Prakash, S. Dixit, A. Mittal, S. Singh. A critical review of HR analytics: visualization and bibliometric analysis approach. Inf. Discov. Deliv. 51, 267–282 (2023). doi: 10.1108/IDD-05-2022-0038. [Google Scholar]
- R. Shanmugavel. Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics. Materials 15, (2022). doi: 10.3390/MA15134548. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.