Open Access
Issue
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
Article Number 01036
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202451101036
Published online 10 April 2024
  1. B. Hüseyin, D. Aydın. Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build. 41, 220–228 (2009). [CrossRef] [Google Scholar]
  2. S. Luis R. Echazú, C. Carlos M. Condorı´, C. Cecilia, A. Iriarte, S. Bistoni Greenhouse solar heating in the Argentinian northwest. Renew. Energy 11, 119–128 (1997). [CrossRef] [Google Scholar]
  3. M. Teitel, A. Shklyar, Y. Elad, V. Dikhtyar, J. Eli. Development of a microwave system for greenhouse heating. Acta Hort. 534, 189–196 (2000). [CrossRef] [Google Scholar]
  4. A. Kavga, T. Panidis, V. Bontozoglou, S. Pantelakis, S. Infrared Heating of Greenhouses Revisited: An Experimental and Modeling Study. Transact. ASABE. 52 2055–2065 (2009). [CrossRef] [Google Scholar]
  5. S. Singhal, A. K. Yadav, R. Prakash. An Investigation of the Thermal Performance of a Tropical Greenhouse Constructed With an Earth Air Heat Exchanger. J. Thermal Sci. Engin. Applic. 15, (2023). [Google Scholar]
  6. A. Hasna, K. Ahmed, L. Mariem, C. Hamza, D. Zied. Numerical investigation of greenhouse climate considering external environmental factors and crop position in Sfax central region of Tunisia. Solar Energy (2023). [Google Scholar]
  7. M. Pejman, T. Morteza, Mehdizadeh, Saman, Rohani, Abbas, Ahamed, Md.Shamim. Prediction of Greenhouse Indoor Air Temperature Using Artificial Intelligence (AI) Combined with Sensitivity Analysis. Horticulturae. 9, 853 (2023). [CrossRef] [Google Scholar]
  8. J. Yang, Y. Guo, T. Chen. Data-driven prediction of greenhouse aquaponics air temperature based on adaptive time pattern network. Environ. Sci. Poll. Res. 30, 48546–48558 (2023). [CrossRef] [Google Scholar]
  9. C. Kunambu Mbolikidolani, V. Ramayya, B. Ngungu, M. Yang’tshi. Green Energy for Sustainable Agriculture: Design and Testing of an Innovative Greenhouse with an Energy-Efficient Cooling System Powered by a Hybrid Energy System for Urban Agriculture. In: Kyamakya, K., Bokoro, P.N. (eds) Recent Advances in Energy Systems, Power and Related Smart Technologies. Studies in Systems, Decision and Control. 472 (2024). [Google Scholar]
  10. R. Md Nasim, Md. Islam, Md. Iqbal, Md. Kabir, M. Chowdhury, M. Gulandaz, M. Ali, Mohammod, J. Moon-Ki, C. Sun-Ok. Spatial, Temporal, and Vertical Variability of Ambient Environmental Conditions in Chinese Solar Greenhouses during Winter. App. Sci. 13, 9835 (2023). [CrossRef] [Google Scholar]
  11. D. Qiaoxue, J. Liu, Q. Mei. Simple model for predicting hourly air temperatures inside Chinese solar greenhouses. Internat. J. Agricult. Biolog. Engin. 16, 56–60 (2023). [CrossRef] [Google Scholar]
  12. A. Hegazy, A. Subiantoro, S. Norris, Stuart. Closed Greenhouse Heating in an Arid Egyptian Winter Using Earth-Air Heat Exchangers. Conference: ASME 2021 International Mechanical Engineering Congress and Exposition (2021). [Google Scholar]
  13. W. Hao, J. Wei, R. Zhang, Z. Xu. Study of Solar Combined Air Energy Greenhouse Heating System Model. Front. Energy Res. 10, 927048 (2022). [CrossRef] [Google Scholar]
  14. H. Mustafa, H. Krisztián. Heating a greenhouse using a solar air collector assisted by thermal storage: a simulation study. MultiScience-microCAD Internat. Multidis. Scient. Conf. 12, 217–232 (2022). [Google Scholar]
  15. Auce, Agris and Jermuss, Aivars and Rucins, Adolfs and Ivanovs, Semjons and Grinbergs, Ugis. Study of the distribution of air temperature in a greenhouse heated by air to air heat pump. Environment. Technologies. Res. Proceed. Internat. Scient. Pract. Conf. 1, 17–22 (2021). [Google Scholar]
  16. X. Xi, D. Dingli X. Xu, F. Liu, B. Zhang. Performance assessment of a novel combined heating mode integrated greenhouse and closed drying system with a dual-temperature steam jet heat pump. Sustain. Energy Tech. Assess. 53, 102470 (2022). [Google Scholar]
  17. C. Maraveas, C.-S. Karavas, D. Loukatos, T. Bartzanas, K. G. Arvanitis E. Symeonaki. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture. 13, 1464 (2023). [CrossRef] [Google Scholar]
  18. C. Mohan, N. Kumari, Sushma, A. Yadav, V. K. Garg, “Introduction to environmental and green chemistry”, Elsevier Publishing, pp 1–22, (2024). doi : 10.1016/B978-0-44318959-3.00005-7 [Google Scholar]
  19. M. Kumar, C. Mohan, S. Kumar, K. Epifantsev, V. Singh et al., “Coordination behavior of Schiff base copper complexes and structural characterization” MRS Advances, vol. 7, pp 939–943, (2022). doi : 10.1557/s43580-022-00348-6 [CrossRef] [Google Scholar]
  20. T. Xia, Y. Li, Z. Sun, X. Wan, D. Sun, L. Wang, X. Liu, L. Tianlai. Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions. App. Energy. 332, 120548 (2023) [CrossRef] [Google Scholar]
  21. A. J. Mendoza-Ferní¡ndez, A. Peña-Ferní¡ndez, L. Molina, P. A. Aguilera. The role of technology in greenhouse agriculture: Towards a sustainable intensification in campo de dalías (Almería, Spain). Agronomy. 11, 1–14 (2021). [Google Scholar]
  22. C. Zhang, D. Zou, X. Huang, Y. Wu. Study on hot air heating characteristics of greenhouse in cold region. Front. Energy Res. 11, 1038182 (2023). [CrossRef] [Google Scholar]
  23. B. August, S. Sigurd, J. Ionut-Ovidiu, L. Badulescu. Assessment of heating and cooling demands of a glass greenhouse in Bucharest, Romania. Thermal Sci. Engin. Prog. 41, 101830 (2023). [CrossRef] [Google Scholar]
  24. J. Khalid, H. Mustafa. Cooling and Heating a Greenhouse in Baghdad by a Solar Assisted Desiccant System. J. Engin. 19, 933–951 (2023). [CrossRef] [Google Scholar]
  25. I. Ihoume, R. Tadili, A. Nora, K. Hind. Design of a low-cost active and sustainable autonomous system for heating agricultural greenhouses: A case study on strawberry (fragaria vulgaris) growth. Heliyon, 9. e14582 (2023). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.