Open Access
Issue |
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 8 | |
Section | Energy Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202451601003 | |
Published online | 15 April 2024 |
- Z. Sen, Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy, Springer Science & Business Media, 2008 [Google Scholar]
- I.U. Hassan, G.A. Naikoo, H. Salim, T. Awan, M.A. Tabook, M.Z. Pedram, M. Mustaqeem, A. Sohani, S. Hoseinzadeh, T.A. Saleh, Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: a critical review. J. Ind. Eng. Chem. 121, 1 (2023) [CrossRef] [Google Scholar]
- N. Saxena, Nanotechnology in Renewable Energy Conversion and Storage Process, in: Modern Nanotechnology: Volume 2: Green Synthesis, Sustainable Energy and Impacts, Springer, 2023, pp. 245–266. [CrossRef] [Google Scholar]
- W. Nabgan, B. Nabgan, A.A. Jalil, M. Ikram, I. Hussain, M.B. Bahari, T. Tran, M. Alhassan, A. Owgi, L. Parashuram, A bibliometric examination and state-of-the-art overview of hydrogen generation from photoelectrochemical water splitting. Int. J. Hydrogen Energy 52, 358 (2023) [Google Scholar]
- M. Fang, G. Dong, R. Wei, J.C. Ho, Hierarchical nanostructures: design for sustainable water splitting, Adv. Energy Mater. 7, 1700559 (2017) [CrossRef] [Google Scholar]
- T.-F. Yeh, J. Cihlář, C.-Y. Chang, C. Cheng, H. Teng, Roles of graphene oxide in photocatalytic water splitting. Mater. Today 16, 78 (2013) [CrossRef] [Google Scholar]
- D. Chimene, D.L. Alge, A.K. Gaharwar, Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261 (2015) [CrossRef] [PubMed] [Google Scholar]
- W.-J. Ong, S.-Y. Voon, L.-L. Tan, B.T. Goh, S.-T. Yong, S.-P. Chai, Enhanced daylight-induced photocatalytic activity of solvent exfoliated graphene (SEG)/ZnO hybrid nanocomposites toward degradation of reactive black 5. Ind. Eng. Chem. Res. 53, 17333 (2014) [CrossRef] [Google Scholar]
- T. Benkó, S. Shen, M. Németh, J. Su, Á. Szamosvölgyi, Z. Kovács, G. Sáfrán, S.M. Al-Zuraiji, E.Z. Horváth, A. Sápi, BiVO4 charge transfer control by a water-insoluble iron complex for solar water oxidation. Appl. Catal. A: Gen. 652, 119035 (2023) [CrossRef] [Google Scholar]
- E. Issaka, M.A. Wariboko, A. Mohammed, M. Enyan, S. Aguree, Trends in enzyme mimics for enhanced catalytic cascade systems for bio-sensing of environmental pollutants-A review, Chem. Eng. J. Adv. 15, 100510 (2023) [CrossRef] [Google Scholar]
- C. Zhang, C. Feng, J. Yuan, Z. Wang, Y. Wang, S. Zhou, P. Gu, Y. Li, Extended construction strategies of Ag3PO4-based heterojunction photocatalysts for robust environmental applications. J. Environ. Chem. Eng. 11, 110705 (2023) [CrossRef] [Google Scholar]
- S.S. Bagade, S. Patel, M. Malik, P.K. Patel, Recent Advancements in applications of graphene to attain next-level solar cells. C 9, 70 (2023) [Google Scholar]
- Q. Zhang, J. Chen, H. Che, B. Liu, Y. Ao, n→ π* Electron transitions and directional charge migration synergistically promoting O2 activation and holes utilization on carbon nitride for efficiently photocatalytic degradation of organic contaminants. Small 19, 2302510 (2023) [CrossRef] [Google Scholar]
- S. Saxena, M. Johnson, F. Dixit, K. Zimmermann, S. Chaudhuri, F. Kaka, B. Kandasubramanian, Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact, Renew. Sustain. Energy Rev. 178, 113238 (2023) [CrossRef] [Google Scholar]
- G.S. Shanker, G.B. Markad, M. Jagadeeswararao, U. Bansode, A. Nag, Colloidal nanocomposite of TiN and N-doped few-layer graphene for plasmonics and electrocatalysis. ACS Energy Lett. 2, 2251 (2017) [CrossRef] [Google Scholar]
- J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398 (2011) [CrossRef] [Google Scholar]
- Z. Long, X. Tong, C. Liu, A.I. Channa, R. Wang, X. Li, F. Lin, A. Vomiero, Z.M. Wang, Near-infrared, eco-friendly ZnAgInSe quantum dots-sensitized graphene oxide-TiO2 hybrid photoanode for high performance photoelectrochemical hydrogen generation, Chem. Eng. J. 426, 131298 (2021) [CrossRef] [Google Scholar]
- G. Righi, J. Plescher, F.-P. Schmidt, R.K. Campen, S. Fabris, A. Knop-Gericke, R. Schlögl, T.E. Jones, D. Teschner, S. Piccinin, On the origin of multihole oxygen evolution in haematite photoanodes. Nature Catal. 5, 888 (2022) [CrossRef] [Google Scholar]
- I. Sadiq, S.A. Ali, T. Ahmad, Graphene-based derivatives heterostructured catalytic systems for sustainable hydrogen energy via overall water splitting. Catal. 13, 109 (2023) [Google Scholar]
- M.F.R. Hanifah, J. Jaafar, M. Othman, A. Ismail, M.A. Rahman, N. Yusof, W. Salleh, F. Aziz, Facile synthesis of highly favorable graphene oxide: Effect of oxidation degree on the structural, morphological, thermal and electrochemical properties, Materialia, 6, 100344 (2019) [CrossRef] [Google Scholar]
- Z. Zhou, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 47, 2298 (2018) [CrossRef] [PubMed] [Google Scholar]
- H. Tang, C.M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 43, 4281 (2014) [CrossRef] [PubMed] [Google Scholar]
- P. Subramanyam, B. Meena, V. Biju, H. Misawa, S. Challapalli, Emerging materials for plasmon-assisted photoelectrochemical water splitting. J. Photochem. Photobiol. C: Photochem. Rev. 51, 100472 (2022) [CrossRef] [Google Scholar]
- J.H. Kim S.M. Hwang, I. Hwang, J. Han, J.H. Kim, Y.H. Jo, K. Seo, Y. Kim, J.S. Lee, Seawater-mediated solar-to-sodium conversion by bismuth vanadate photoanode-photovoltaic tandem cell: Solar rechargeable seawater battery, Iscience, 19, 232 (2019) [CrossRef] [PubMed] [Google Scholar]
- S. Nayak, K. Parida, Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorg. Chem. Front. 7, 3805 (2020) [CrossRef] [Google Scholar]
- W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu, High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings, Nano Lett. 9, 2855 (2009) [CrossRef] [PubMed] [Google Scholar]
- Z. Li, S. Wu, W. Lv, J.J. Shao, F. Kang, Q.H. Yang, Graphene emerges as a versatile template for materials preparation, Small, 12, 2674 (2016) [CrossRef] [PubMed] [Google Scholar]
- Y. Zou, X. Zhou, Y. Zhu, X. Cheng, D. Zhao, Y. Deng, sp2-Hybridized carbon-containing block copolymer templated synthesis of mesoporous semiconducting metal oxides with excellent gas sensing property. Acc. Chem. Res. 52, 714 (2019) [CrossRef] [PubMed] [Google Scholar]
- T. Soltani, A. Tayyebi, -K. Lee. B, Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/rGO photoanode for greatly enhanced photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 185 325 (2018) [CrossRef] [Google Scholar]
- C. Santana Santos, B.N. Jaato, I. Sanjuán, W. Schuhmann, C. Andronescu, Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem. Rev. 123, 4972 (2023) [CrossRef] [PubMed] [Google Scholar]
- I. Hamdani, A. Bhaskarwar, Recent progress in material selection and device designs for photoelectrochemical water-splitting, Renew. Sustain. Energy Rev. 138, 110503 (2021) [CrossRef] [Google Scholar]
- M. Park, N. Kim, J. Lee, M. Gu, B.-S. Kim, Versatile graphene oxide nanosheets via covalent functionalization and their applications. Mater. Chem. Front. 5, 4424 (2021) [CrossRef] [Google Scholar]
- V. Sharma, T. Getahun, M. Verma, A. Villa, N. Gupta, Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons. Renew. Sustain. Energy Rev. 133, 110280 (2020) [CrossRef] [Google Scholar]
- R. Kumar, E. Joanni, R.K. Singh, D.P. Singh, S.A. Moshkalev, Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci. 67, 115 (2018) [CrossRef] [Google Scholar]
- Y.W. Phuan, W.-J. Ong, M.N. Chong, J.D. Ocon, Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. J. Photochem. Photobiol. C: Photochem. Rev. 33, 54 (2017) [CrossRef] [Google Scholar]
- A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023) [CrossRef] [PubMed] [Google Scholar]
- I. Khan, A. Jalilov, K. Fujii, A. Qurashi, Quasi-1D aligned nanostructures for solar-driven water splitting applications: challenges, promises, and perspectives. Solar RRL 5, 2000741 (2021) [CrossRef] [Google Scholar]
- T.-F. Yeh, C.-Y Teng, Chen L.-C, Chen S.-J, Teng H, Graphene oxide-based nanomaterials for efficient photoenergy conversion. J. Mater. Chem. A 4, 2014 (2016) [CrossRef] [Google Scholar]
- F. Xu, D. Wu, R. Fu, B. Wei, Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20, 629 (2017) [CrossRef] [Google Scholar]
- N.S. Lewis, G. Crabtree, A.J. Nozik, M.R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz, M. Spitler, Basic research needs for solar energy utilization. report of the basic energy sciences workshop on solar energy utilization, april 18-21, 2005, in, DOESC (USDOE Office of Science (SC)), 2005 [Google Scholar]
- S. Faraji Abdolmaleki, D. Esfandiary Abdolmaleki, P.M. Bello Bugallo, Finding sustainable countries in renewable energy sector: A case study for an EU energy system. Sustainability 15, 10084 (2023) [CrossRef] [Google Scholar]
- S. Mazzanti, A. Savateev, Emerging concepts in carbon nitride organic photocatalysis. ChemPlusChem 85, 2499 (2020) [CrossRef] [PubMed] [Google Scholar]
- E. Morales-Narváez, L. Baptista-Pires, A. Zamora-Gálvez, A. Merkoçi, Graphene-based biosensors: going simple. Adv. Mater. 29, 1604905 (2017) [CrossRef] [Google Scholar]
- N. Harata, T.A. Ryan, S.J. Smith, J. Buchanan, R.W. Tsien, Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proceedings of the National Academy of Sciences, 98, 12748 (2001) [CrossRef] [PubMed] [Google Scholar]
- Y. Ding, S. Maitra, C. Wang, R. Zheng, M. Zhang, T. Barakat, S. Roy, J. Liu, Y. Li, T. Hasan, Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. J. Energy Chem. 70, 236–247 (2022). [CrossRef] [Google Scholar]
- S. John, W. Nogala, B. Gupta, S. Singh, Synergy of photocatalysis and fuel cells: A chronological review on efficient designs, potential materials and emerging applications. Front. Chem. 10, 1038221 (2022) [CrossRef] [Google Scholar]
- L. Duan, D.R. D’hooge, L. Cardon, Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 114, 100617 (2020) [CrossRef] [Google Scholar]
- T. Piersma, J.A. Van Gils, The flexible phenotype: a body-centred integration of ecology, physiology, and behaviour, Oxford University Press, 2011. [Google Scholar]
- J. Van Dijck, The culture of connectivity: A critical history of social media, Oxford University Press, 2013. [CrossRef] [Google Scholar]
- F.W. Low, C.W. Lai, S.K. Tiong, N. Amin, Graphene-Based nanocomposites for renewable energy application, in: Handbook of Polymer and Ceramic Nanotechnology, Springer, pp. 929–963, 2021 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.