Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 03003
Number of page(s) 8
Section Environmental Awareness
DOI https://doi.org/10.1051/e3sconf/202451603003
Published online 15 April 2024
  1. H.K. Paumo, S. Dalhatou, L.M. Katata-Seru, B.P. Kamdem, J.O. Tijani, V. Vishwanathan, A. Kane, I. Bahadur, TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J. Mol. Liq. 331, 115458 (2021). [CrossRef] [Google Scholar]
  2. J. Margot, L. Rossi, D.A. Barry, C. Holliger, A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip. Rev.: Water 2, 457 (2015) [CrossRef] [Google Scholar]
  3. E.D. Mohamed Isa, K. Shameli, H.J. Ch’ng, N.W. Che Jusoh, R. Hazan, Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. Adv. Powder Technol. 32, 2398 (2021) [CrossRef] [Google Scholar]
  4. R. Sabouni, H. Gomaa, Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO, Environ. Sci. Pollut. Res. Int. 26, 5371 (2019) [Google Scholar]
  5. A.R. Lado Ribeiro, N.F.F. Moreira, G. Li Puma, A.M.T. Silva, Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem. Eng. J. 363, 155 (2019) [CrossRef] [Google Scholar]
  6. N. Nassiri Koopaei, M. Abdollahi, Health risks associated with the pharmaceuticals in wastewater. DARU J. Pharm. Sci. 25, 9 (2017) [CrossRef] [Google Scholar]
  7. E.C. Umejuru, E. Prabakaran, K. Pillay, Coal fly ash decorated with graphene oxide-tungsten oxide nanocomposite for rapid removal of Pb2+ ions and reuse of spent adsorbent for photocatalytic degradation of acetaminophen. Acs Omega 6, 11155 (2021) [CrossRef] [PubMed] [Google Scholar]
  8. A.-M. Abdel-Wahab, A.-S. Al-Shirbini, O. Mohamed, O. Nasr, Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core-shell nanostructures, J. Photochem. Photobiol. A 347, 186 (2017). [CrossRef] [Google Scholar]
  9. K.S. Namshah, R.M. Mohamed, WO3–TiO2 nanocomposites for paracetamol degradation under visible light. Appl. Nanosci. 8, 2021 (2018) 2021–2030. [CrossRef] [Google Scholar]
  10. P. Jayasree, N. Remya, Photocatalytic degradation of paracetamol using aluminosilicate supported TiO2. Water Sci. Technol. 82, 2114 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. T. Velempini, E. Prabakaran, K. Pillay, Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review. Mater. Today Chem. 19, 100380 (2021). [CrossRef] [Google Scholar]
  12. C.A. Aguilar, C. Montalvo, B.B. Zermeño, R.M. Cerón, J.G. Cerón, F. Anguebes, M.A. Ramírez, Photocatalytic degradation of acetaminophen, tergitol and nonylphenol with catalysts TiO2/Ag under UV and Vis light. Int. J. Environ. Sci. Technol. 16, 843 (2018) [Google Scholar]
  13. C. Alberoni, I. Barroso-Martin, A. Infantes-Molina, E. Rodriguez-Castellon, A. Talon, H.G. Zhao, S.J. You, A. Vomiero, E. Moretti, Ceria doping boosts methylene blue photodegradation in titania nanostructures. Mater. Chem. Front. 5, 4138 (2021) [CrossRef] [Google Scholar]
  14. Z. Noohpisheh, H. Amiri, S. Farhadi, A. Mohammadi-gholami, Green synthesis of Ag-ZnO nanocomposites using Trigonella foenumgraecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties. Spectrochim. Acta - A: Mol. Biomol. 240, 118595 (2020) [CrossRef] [Google Scholar]
  15. S. Mangala Nagasundari, K. Muthu, K. Kaviyarasu, D.A.A. Farraj, R.M. Alkufeidy, Current trends of Silver doped Zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surf. Interfaces 23, 100931 (2021) [CrossRef] [Google Scholar]
  16. S. Harinee, K. Muthukumar, R.A. James, M. Arulmozhi, H.U. Dahms, M. Ashok, Bio-approach ZnO/Ag nano-flowers: enhanced photocatalytic and photoexcited anti-microbial activities towards pathogenic bacteria. Mater. Today Sustain. 18, 100133 (2022) [CrossRef] [Google Scholar]
  17. B.Y. Sahyar, M. Kaplan, M. Ozsoz, E. Celik, S. Otles, Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry 130, 107327 (2019) [CrossRef] [PubMed] [Google Scholar]
  18. B. Ramasamy, J. Jeyadharmarajan, P. Chinnaiyan, Novel organic assisted Ag-ZnO photocatalyst for atenolol and acetaminophen photocatalytic degradation under visible radiation: performance and reaction mechanism. Environ. Sci. Pollut. Res. 28, 39637 (2021) [CrossRef] [PubMed] [Google Scholar]
  19. M.J. Khan, K. Tahir, A.A. El-Zahhar, A. Arooj, H.A. Al-Abdulkarim, E.A.M. Saleh, S. Nazir, H.S. Al-Shehri, K. Husain, A.U. Khan, Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation. Photodiagnosis Photodyn. Ther. 36, 102619 (2021) [CrossRef] [Google Scholar]
  20. M. Ahmad, M.T. Qureshi, W. Rehman, N.H. Alotaibi, A. Gul, R.S. Abdel Hameed, M.A. Elaimi, M.F.H. Abd el-kader, M. Nawaz, R. Ullah, Enhanced photocatalytic degradation of RhB dye from aqueous solution by biogenic catalyst Ag@ZnO, J. Alloys Compd. 895, 162636 (2022) [CrossRef] [Google Scholar]
  21. J. Kadam, P. Dhawal, S. Barve, S. Kakodkar, Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing, SN Appl. Sci. 2, 738 (2020) [CrossRef] [Google Scholar]
  22. M.A.M. Mokhtar, Ali, R. R., Lei, Z., Jusoh, N. W. C., & Tarmizi, Z. I. A, Efficiency of Low-Ag-content biosynthesized ZnO/Ag on photodegradation of paracetamol. Chem. Eng. Trans. 106, 1051 (2023) [Google Scholar]
  23. H.D. Kyomuhimbo, I.N. Michira, F.B. Mwaura, S. Derese, U. Feleni, E.I. Iwuoha, Silver–zinc oxide nanocomposite antiseptic from the extract of Bidens pilosa, SN Appl. Sci. 1 (2019) 681. [CrossRef] [Google Scholar]
  24. Y.S. Jung, J. Wuenschell, H.K. Kim, P. Kaur, D.H. Waldeck, Blue-shift of surface plasmon resonance in a metal nanoslit array structure. Opt Express 17, 16081 (2009) [CrossRef] [PubMed] [Google Scholar]
  25. R. Singh, P.B. Barman, D. Sharma, Synthesis, structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes. J. Mater. Sci.: Mater. Electron. 28, 5705 (2017) [CrossRef] [Google Scholar]
  26. K.R. Basavalingiah, S. Harishkumar, Udayabhanu, G. Nagaraju, D. Rangappa, Chikkahanumantharayappa, Highly porous, honeycomb like Ag–ZnO nanomaterials for enhanced photocatalytic and photoluminescence studies: green synthesis using Azadirachta indica gum. SN Appl. Sci. 1, 935 (2019) [CrossRef] [Google Scholar]
  27. F.H. Abdullah, N.H.H. Abu Bakar, M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik 206, 164279 (2020) [CrossRef] [Google Scholar]
  28. D. Thatikayala, N. Jayarambabu, V. Banothu, C.B. Ballipalli, J. Park, K.V. Rao, Biogenic synthesis of silver nanoparticles mediated by Theobroma cacao extract: enhanced antibacterial and photocatalytic activities. J. Mater. Sci.: Mater. Electron. 30, 17303 (2019) [CrossRef] [Google Scholar]
  29. Z. Shaghaghi, S. Mollaei, A.R. Amani-Ghadim, Z. Abedini, Green synthesis of ZnO nanoparticles using the aqueous extract of Platanus orientalis: Structural characterization and photocatalytic activity. Mater. Chem. Phys. 305, 127900 (2023) [CrossRef] [Google Scholar]
  30. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015) [CrossRef] [Google Scholar]
  31. F.H. Abdullah, N.H.H. Abu Bakar, M. Abu Bakar, Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment. J. Hazard. Mater. 406, 124779 (2021) [CrossRef] [Google Scholar]
  32. M.A. Al-Gharibi, H.H. Kyaw, J.N. Al-Sabahi, M.T. Zar Myint, Z.A. Al-Sharji, M.Z. Al-Abri, Silver nanoparticles decorated zinc oxide nanorods supported catalyst for photocatalytic degradation of paracetamol. Mater. Sci. Semicond. Process. 134, 105994 (2021) [CrossRef] [Google Scholar]
  33. M. Sorbiun, E. Shayegan Mehr, A. Ramazani, S. Taghavi Fardood, Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J. Mater. Sci.: Mater. Electron. 29, 2806 (2018) [CrossRef] [Google Scholar]
  34. D. Thatikayala, V. Banothu, J. Kim, D.S. Shin, S. Vijayalakshmi, J. Park, Enhanced photocatalytic and antibacterial activity of ZnO/Ag nanostructure synthesized by Tamarindus indica pulp extract, J. Mater. Sci.: Mater. Electron. 31, 5324–5335 (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.