Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 04001
Number of page(s) 6
Section Biochemistry
DOI https://doi.org/10.1051/e3sconf/202451604001
Published online 15 April 2024
  1. T.A. Sial, M.N. Khan, Z. Lan, F. Kumbhar, Z. Ying, J. Zhang, D. Sun, X. Li, Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Saf. Environ. Prot. 122, 366 (2019) [CrossRef] [Google Scholar]
  2. M. Ragab, M.F. Osman, M.E. Khalil, M.S. Gouda, Banana (Musa sp.) peels as a source of pectin and some food nutrients. J. Agric. Res. Kafr El-Sheikh Univ. 42, 88 (2016) [Google Scholar]
  3. L. Syukriani, S. Febjislami, D.S. Lubis, R. Hidayati, A. Asben, I. Suliansyah, J. Jamsari, Physicochemical characterization of peel, flesh and banana fruit cv. raja [Musa paradisiaca]. IOP Conf. Ser. Earth Environ. Sci. 741, 012006 (2021) [CrossRef] [Google Scholar]
  4. M.M. Rahman, N.N.B. Said, K.B. Mat, N.D. Rusli, R.K.R.I. Airina, Effect of ensiling duration on nutritional composition and oxalate content in dwarf Napier grass silage. IOP Conf. Ser. Earth Environ. Sci. 756, 012039 (2021) [CrossRef] [Google Scholar]
  5. S. Usman, P.A. Dele, S.O. Jimoh, R.Y. Aderinboye, J.A. Olanite, Physical, fermentative, and nutritional quality of silages made from three Sorghum bicolor varieties as affected by ensiling duration in South-west Nigeria, Trop. Anim. Health Prod. 53, 239 (2021) [CrossRef] [PubMed] [Google Scholar]
  6. S. Mishra, B. Prabhakar, P.S. Kharkar, A.M. Pethe, Banana peel waste: an emerging cellulosic material to extract nanocrystalline cellulose. ACS Omega 8, 1140 (2022) [Google Scholar]
  7. J. Zhang, C. Wen, H. Zhang, Y. Duan, H. Ma, Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 95, 183 (2020) [CrossRef] [Google Scholar]
  8. N.A.A. Halim, Z.Z. Abidin, S.I. Siajam, C.G. Hean, M.R. Harun, Optimization studies and compositional analysis of subcritical water extraction of essential oil from Citrus hystrix DC. leaves. J. Supercrit. Fluids 178, 105384 (2021) [CrossRef] [Google Scholar]
  9. J.M. Costa, L.C. Ampese, H.D.D. Ziero, W.G. Sganzerla, T. Forster-Carneiro, Apple pomace biorefinery: Integrated approaches for the production of bioenergy, biochemicals, and value-added products–An updated review. J. Environ. Chem. Eng. 10, 108358 (2022) [CrossRef] [Google Scholar]
  10. S.M. Zul, K. Iwamoto, M.A.M. Rahim, N. Abdullah, S.E. Mohamad, K. Shimizu, H. Hara, Production of Liquid Fertilizer from Chicken Feather Waste by Using Subcritical Water Treatment for Plant and Algal Growth. IOP Conf. Ser. Earth Environ. Sci. 479, 012033 (2020) [CrossRef] [Google Scholar]
  11. R.G. da Rosa, W.G. Sganzerla, T.L.C.T. Barroso, L.E.N. Castro, M.D. Berni, T. Forster-Carneiro, Sustainable bioprocess combining subcritical water pretreatment followed by anaerobic digestion for the valorization of jabuticaba (Myrciaria cauliflora) agro-industrial by-product in bioenergy and biofertilizer. Fuel 334, 126698 (2023) [CrossRef] [Google Scholar]
  12. L.G.G. Rodrigues, S. Mazzutti, I. Siddique, M. da Silva, L. Vitali, S.R.S. Ferreira, Subcritical water extraction and microwave-assisted extraction applied for the recovery of bioactive components from Chaya (Cnidoscolus aconitifolius Mill.). J. Supercrit. Fluids 165, 104976 (2020) [CrossRef] [Google Scholar]
  13. Z.K. Akalu, S.H. Geleta, Comparative analysis on the proximate composition of tubers of Colocasia Esculenta, L. Schott and Dioscorea alata cultivated in Ethiopia. Am. J. Biosci. Bioieng. 7, 93 (2019) [Google Scholar]
  14. K.B. Boadu, R. Nsiah-Asante, R.T. Antwi, K.A. Obirikorang, R. Anokye, M. Ansong, Influence of the chemical content of sawdust on the levels of important macronutrients and ash composition in Pearl oyster mushroom (Pleurotus ostreatus). PLoS One 18, e0287532 (2023) [CrossRef] [PubMed] [Google Scholar]
  15. M.A. Peters, C.T. Alves, J. Wang, J.A. Onwudili, Subcritical Water Hydrolysis of Fresh and Waste Cooking Oils to Fatty Acids Followed by Esterification to Fatty Acid Methyl Esters: Detailed Characterization of Feedstocks and Products. ACS Omega 7, 46870 (2022) [CrossRef] [PubMed] [Google Scholar]
  16. C. Giombelli, I.J. Iwassa, C. da Silva, B.C.B. Barros, Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J. Supercrit. Fluids 165, 104985 (2020) 104985. [CrossRef] [Google Scholar]
  17. L. Gu, H. Jiao, D.J. McClements, M. Ji, J. Li, C. Chang, S. Dong, Y. Su, Y. Yang, Improvement of egg yolk powder properties through enzymatic hydrolysis and subcritical fluid extraction. LWT 150, 112075 (2021) [CrossRef] [Google Scholar]
  18. I.J. Iwassa, M.A. dos Santos Ribeiro, E.C. Meurer, L. Cardozo-Filho, B.C. Bolanho, C. da Silva, Effect of subcritical water processing on the extraction of compounds, composition, and functional properties of asparagus by-product. J. Food Process Eng. 42, e13060 (2019) [CrossRef] [Google Scholar]
  19. J.B.M.D. Silva, M.T.P. Paiva, A.C.L. Pavanello, J. Mantovan, S. Mali, Fiber-rich ingredients obtained from agroindustrial residues through combined hydrothermal-chemical processes, Food Chem. Adv. 1, 100149 (2022) [CrossRef] [Google Scholar]
  20. G. Yanti, N. Jamarun, T. Astuti, Quality improvement of sugarcane top as animal feed with biodelignification by phanerochaete chrysosporium fungi on in-vitro digestibility of NDF, ADF, Cellulose and hemicellulose. J. Phys. Conf. Ser. 1940, 012063 (2021) [CrossRef] [Google Scholar]
  21. R. Melgosa, E. Trigueros, M.T. Sanz, M. Cardeira, L. Rodrigues, N. Fernández, A.A. Matias, M.R. Bronze, M. Marques, A. Paiva, Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 164, 104943 (2020) [CrossRef] [Google Scholar]
  22. D. Solanki, S. Prakash, N. Hans, T. Nagpal, S.S.M. Satheeshkanth, J.K. Sahu, B. Bhandari, Subcritical water hydrolysis of chia seed proteins and their functional characteristics. Food Hydrocoll 143, 108883 (2023) [CrossRef] [Google Scholar]
  23. Y.R. Yanza, A. Fitri, B. Suwignyo, N. Hidayatik, N.R. Kumalasari, A. Irawan, A. Jayanegara, The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals 11, 3317 (2021) [CrossRef] [PubMed] [Google Scholar]
  24. D. Ramdani, I. Hernaman, A.A. Nurmeidiansyah, D. Heryadi, S. Nurachma, Potential use of banana peels waste at different ripening stages for sheep feeding on chemical, tannin, and in vitro assessments. IOP Conf. Ser. Earth Environ. Sci. 334, 012003 (2019) [CrossRef] [Google Scholar]
  25. O.O. Aina, M.B. Oyedeji, D.A. Adegboyega, A.O. Owoloja, Phytochemical screening of some selected banana peels of Musa acuminata species. Int. J. Agric. 4, 68 (2019) [Google Scholar]
  26. M.-H. Omnes, J. Le Goasduff, H. Le Delliou, N. Le Bayon, P. Quazuguel, J.H. Robin, Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.). Aquac. Rep. 6, 21 (2017) [CrossRef] [Google Scholar]
  27. P. V Dhawale, S.K. Vineeth, R. V Gadhave, J.F. MJ, M.V. Supekar, V.K. Thakur, P. Raghavan, Tannin as a renewable raw material for adhesive applications: a review, Mater. Adv. 3, 3365 (2022) [CrossRef] [Google Scholar]
  28. K.S. Duba, A.A. Casazza, H. Ben Mohamed, P. Perego, L. Fiori, Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling Food Bioprod. Process. 94, 29 (2015) [Google Scholar]
  29. S. Erşan, Ö.G. Üstündağ, R. Carle, R.M. Schweiggert, Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 253, 46 (2018) [Google Scholar]
  30. C. Cravotto, G. Grillo, A. Binello, L. Gallina, M. Olivares-Vicente, M. Herranz-López, V. Micol, E. Barrajón-Catalán, G. Cravotto, Bioactive Antioxidant Compounds from Chestnut Peels through Semi-Industrial Subcritical Water Extraction, Antioxidants 11, 988 (2022) [CrossRef] [PubMed] [Google Scholar]
  31. T. Brezo-Borjan, J. Švarc-Gajić, S. Morais, C. Delerue-Matos, F. Rodrigues, I. Lončarević, B. Pajin, Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water. Processes 11, 1766 (2023) [CrossRef] [Google Scholar]
  32. M.B.S. Yusoff, B.S. Sharif, M.A. Noormah, Nutrient composition of Malaysian feed materials and guides to feeding of cattle and goats, Department of Veterinary Services Malaysia Pub (2005). [Google Scholar]
  33. N. Gurung, Nutritional requirements of different classes of meat goats, Profess. Agric. Workers J. 6, 90 (2020) [Google Scholar]
  34. D. Lalman, C. Richards, Nutrient requirements of beef cattle, Oklahoma Cooperative Extension Service (2017) [Google Scholar]
  35. E. Liu, M.D. Hanigan, M.J. VandeHaar, Importance of considering body weight change in response to dietary protein deficiency in lactating dairy cows. J. Dairy Sci. 104, 11567 (2021) [CrossRef] [Google Scholar]
  36. A.A. Oso, A.O. Ashafa, Nutritional composition of grain and seed proteins, Grain and Seed Proteins Functionality. 31 (2021) [Google Scholar]
  37. S.M. Hassan, Nutritional, Functional and Bioactive Properties of Sorghum (Sorghum Bicolor I. Moench) with its Future Outlooks: A Review (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.