Open Access
Issue
E3S Web of Conf.
Volume 517, 2024
The 10th International Conference on Engineering, Technology, and Industrial Application (ICETIA 2023)
Article Number 16001
Number of page(s) 8
Section Probability and Statistics
DOI https://doi.org/10.1051/e3sconf/202451716001
Published online 15 April 2024
  1. Warsito, B., et al. Evaluation of river water quality by using hierarchical clustering analysis. IOP Conference Series: Earth and Environmental Science. 896(1), p. 012072, IOP Publishing, (2021) [CrossRef] [Google Scholar]
  2. Novianta, M. A., Syafrudin, and Warsito, Bo. K- Means Clustering for Grouping Rivers in DIY based on Water Quality Parameters. JUITA: Jurnal Informatika, 11(1), p 155 (2023) [CrossRef] [Google Scholar]
  3. Di, Zhenzhen, Miao Chang, and Peikun Guo. Water quality evaluation of the Yangtze River in China using machine learning techniques and data monitoring on different time scales. Water, 11(2), p. 339 (2019) [CrossRef] [Google Scholar]
  4. Zubaidah, Tien, Nieke Karnaningroem, and Agus Slamet. K-means method for clustering water quality status on the rivers of Banjarmasin, Indonesia. ARPN Journal of Engineering and Applied Sciences, 13(6), p. 3692 (2018) [Google Scholar]
  5. Mohammadrezapour, Omolbani, Ozgur Kisi, and Fariba Pourahmad. Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality. Neural Computing and Applications, 32 (8), p.3763 (2020) [CrossRef] [Google Scholar]
  6. Marlina, Nelly, Hudori Hudori, and Ridwan Hafidh. Pengaruh Kekasaran Saluran dan Suhu Air Sungai pada Parameter Kualitas Air COD, TSS di Sungai Winongo Menggunakan Software QUAL2Kw. Jurnal Sains & Teknologi Lingkungan , 9 (2), p. 122 (2017) [CrossRef] [Google Scholar]
  7. Komala, P. S., A. Nur, and I. Nazhifa. Pengaruh Parameter Lingkungan Terhadap Kandungan Senyawa Organik Danau Maninjau Sumatera Barat. Seminar Nasional Pembangunan Wilayah dan Kota Berkelanjutan. 1(1), p. 265 (2019) [CrossRef] [Google Scholar]
  8. Ali Abed, Salwan, Salam Hussein Ewaid, and Nadhir Al-Ansari. Evaluation of water quality in the Tigris River within Baghdad, Iraq using multivariate statistical techniques. Journal of Physics: Conference Series. 1294(1), p.072025. (2019) [CrossRef] [Google Scholar]
  9. Oz, Nurtac, Bayram Topal, and Halil Ibrahim Uzun. Prediction of water quality in Riva River watershed. Ecological Chemistry and Engineering S. 26(4), p.727 (2019) [CrossRef] [Google Scholar]
  10. Montgomery, D. C., Peck, E. A. and Vining, G. G. Introduction to linear regression analysis. John Wiley & Sons, (2021) [Google Scholar]
  11. Poole, Michael A., and Patrick N. O'Farrell. The assumptions of the linear regression model. Transactions of the Institute of British Geographers: 52 (1), p. 145 (1971) [CrossRef] [Google Scholar]
  12. Olive, David J., and David J. Olive. Multiple linear regression. Springer International Publishing, (2017) [CrossRef] [Google Scholar]
  13. Gaya, Muhammad Sani, et al. Estimation of water quality index using artificial intelligence approaches and multi-linear regression. Int. J. Artif. Intell. ISSN 2252 (2020) [Google Scholar]
  14. Yao, Weixin, and Longhai Li. A new regression model: modal linear regression. Scandinavian Journal of Statistics, 41(3), p. 656 (2014) [CrossRef] [Google Scholar]
  15. Uyanık, Gülden Kaya, and Neşe Güler. A study on multiple linear regression analysis. Procedia-Social and Behavioral Sciences , 106, p. 234 (2013) [CrossRef] [Google Scholar]
  16. Pandis, Nikolaos. Multiple linear regression analysis. American journal of orthodontics and dentofacial orthopedics , 149 (4), p 581 (2016) [CrossRef] [PubMed] [Google Scholar]
  17. Livingstone, David J., and David W. Salt. Judging the significance of multiple linear regression models. Journal of Medicinal Chemistry , 48(3), p 661(2005) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.