Open Access
Issue |
E3S Web Conf.
Volume 519, 2024
5th Talenta Conference on Engineering, Science and Technology (TALENTA CEST-5 2024)
|
|
---|---|---|
Article Number | 03034 | |
Number of page(s) | 6 | |
Section | Environment Science | |
DOI | https://doi.org/10.1051/e3sconf/202451903034 | |
Published online | 01 May 2024 |
- A. E. Minamo, F. D. S. Sumadi, H. Wibowo, and Y. Munarko, “Classification of batik patterns using K-nearest neighbor and support vector machine,” Bull. Electr. Eng. Informatics, vol. 9, no. 3, pp. 1260–1267, 2020, doi: 10.11591/eei.v9i3.1971. [CrossRef] [Google Scholar]
- N. Suciati, D. Herumurti, and A. Y. Wijaya, “Feature extraction using gray-level co-occurrence matrix of wavelet coefficients and texture matching for batik motif recognition,” Eighth Int. Conf. Graph. Image Process. (ICGIP 2016), vol. 10225, no. Icgip 2016, p. 1022502, 2017, doi: 10.1117/12.2266933. [CrossRef] [Google Scholar]
- R. Aprianti, K. Evandari, R. A. Pramunendar, and M. Soeleman, “Comparison Of Classification Method On Lombok Songket Woven Fabric Based On Histogram Feature,” in 2021 International Seminar on Application for Technology of Information and Communication (iSemantic), 2021, pp. 196–200, doi: 10.1109/iSemantic52711.2021.9573223. [CrossRef] [Google Scholar]
- H. Noprisson, E. Ermatita, A. Abdiansah, V. Ayumi, M. Purba, and H. Setiawan, “Fine-Tuning Transfer Learning Model in Woven Fabric Pattern Classification,” Int. J. Innov. Comput. Inf. Control, vol. 18, no. 6, pp. 1885–1894, 2022, doi: 10.24507/ijicic.18.06.1885. [Google Scholar]
- B. Imran and M. M. Efendi, “The Implementation of Extraction Feature Using GLCM and BackPropagation Artificial Neural Network to Classify Lombok Songket Woven Cloth,” pp. 131–136. [Google Scholar]
- T. M. Panggabean and A. C. Barus, “Combining Local and Global Descriptors Through Rotation Invariant Texture Analysis for Ulos Classification,” in 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), 2019, pp. 153–159, doi: 10.1109/RITAPP.2019.8932823. [Google Scholar]
- N. Setiohardjo and A. Harjoko, “Analisis Tekstur untuk Klasifikasi Motif Kain (Studi Kasus Kain Tenun Nusa Tenggara Timur),” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 10, p. 177, Jul. 2014, doi: 10.22146/ijccs.6545. [CrossRef] [Google Scholar]
- G. T. Shrivakshan and C. Chandrasekar, “A Comparison of various Edge Detection Techniques used in Image Processing,” Int. J. Comput. Sci. Issues, vol. 9, pp. 269–276, Sep. 2012. [Google Scholar]
- D. A. Gustian, N. L. Rohmah, G. F. Shidik, A. Z. Fanani, and R. Anggi, “Classification of Troso Fabric Using SVM-RBF Multi-class Method with GLCM and PCA Feature Extraction,” 2019 Int. Semin. Appl. Technol. Inf. Commun., pp. 7–11, 2019, doi: 10.1109/ISEMANTIC.2019.8884329. [Google Scholar]
- S. Sitanggang and P. M. Hasugian, “Image Edge Detection for Batak Ulos Motif Recognition using Canny Operators,” vol. 14, no. 2, pp. 137–154, 2020. [Google Scholar]
- F. Sun, X. Hu, H. Lin, M. J. Clifford, R. Zhang, and B. Xin, “Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix,” 2021, DOI:10.1088/1742-6596/2017/1/012010. [Google Scholar]
- B. Siregar, I. P. S. Panggabean, Fahmi, and A. Hizriadi, “Classification of traditional ulos of Batak Toba using probabilistic neural network,” J. Phys. Conf. Ser., vol. 1882, no. 1, 2021, doi: 10.1088/1742-6596/1882/1/012131. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.