Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 01004
Number of page(s) 5
Section Multidimensional Research and Practice on Water Resources and Water Environment
DOI https://doi.org/10.1051/e3sconf/202452001004
Published online 03 May 2024
  1. Z. Zhao, H. Li, X. Song, and W. Sun, (2023) “Dynamic Monitoring of Surface Water Bodies and Their Influencing Factors in the Yellow River Basin,” Remote Sensing, vol. 15, no. 21, p. 5157, https://doi.org/10.3390/rs15215157 [CrossRef] [Google Scholar]
  2. Y. P. Chen, B. J. Fu, Y. Zhao, K. B. Wang, M. M. Zhao, J. F. Ma, J.H. Wu, C. Xu, W.G. Liu, H. Wang, (2020) “Sustainable development in the Yellow River Basin: Issues and strategies,” Journal of Cleaner Production, vol. 263, p. 121223, https://doi.org/10.1016/j.jclepro.2020.121223 [CrossRef] [Google Scholar]
  3. L. Jiang, Q. Zuo, J. Ma, and Z. Zhang, (2021) “Evaluation and prediction of the level of high-quality development: A case study of the Yellow River Basin, China,” Ecological Indicators, vol. 129, p. 107994, 2021. https://doi.org/10.1016/j.ecolind.107994 [CrossRef] [Google Scholar]
  4. Peterson, K. T., Sagan, V., Sidike, P., Hasenmueller, E. A., Sloan, J. J., & Knouft, J. H. (2019). Machine learning-based ensemble prediction of water-quality variables using feature-level and decision-level fusion with proximal remote sensing. Photogrammetric Engineering and Remote Sensing, 85(4):269–280 DOI:10.14358/PERS.85.4.269. [CrossRef] [Google Scholar]
  5. Al-Adhaileh M. H., Alsaade F.W. (2021) Modelling and Prediction of Water Quality by Using Artificial Intelligence[J]. Sustainability, 13. DOI:10.3390/su13084259. [Google Scholar]
  6. Han H. G., Chen Q. L., Qiao J.F. (2011) An efficient self-organizing RBF neural network for water quality prediction.[J]. Neural Networks the Official Journal of the International Neural Network Society, 24(7):717–725 DOI:10.1016/j.neunet.2011.04.006. [CrossRef] [PubMed] [Google Scholar]
  7. Kathiroli P., Kanmani S. (2021) An Efficient clusterbased routing using Sparrow Search Algorithm for heterogeneous nodes in Wireless Sensor Networks[C]//International Conference on Communication information and Computing Technology. 2021. DOI:10.1109/ICCICT50803.9510032. [Google Scholar]
  8. Trajkovic S., Stankovic M., Todorovic B. (2000) Estimation of FAO Blaney-Criddle b factor by RBF network[J]. Journal of Irrigation and Drainage Engineering, 126(4). DOI:10.1061/(ASCE)0733-9437(2000)126:4(268) [CrossRef] [Google Scholar]
  9. Wang H., Zhou X., Tian Y. (2022) Robust adaptive fault-tolerant control using RBF-based neural network for a rigid-flexible robotic system with unknown control direction[J]. International Journal of Robust and Nonlinear Control, 32(3):1272–1302 DOI:10.1002/rnc.5880. [CrossRef] [Google Scholar]
  10. Ou Y., Yu L., Yan A. (2023) An Improved Sparrow Search Algorithm for Location Optimization of Logistics Distribution Centers[J]. Journal of Circuits, Systems and Computers, 32(09). DOI:10.1142/S0218126623501505. [Google Scholar]
  11. Kathiroli P., Kanmani S. (2021) An Efficient clusterbased routing using Sparrow Search Algorithm for heterogeneous nodes in Wireless Sensor Networks[C]//International Conference on Communication information and Computing Technology. DOI:10.1109/ICCICT50803.2021.9510032. [Google Scholar]
  12. Huang, C., Geng, L., Yan, B., Bian, J., & Zhao, Y. (2021) Dynamic prediction and regulation of water resource carrying capacity: a case study on the Yellow River basin[J]. Advances in Water Science, 32(1):59–67 DOI:10.14042/j.cnki.32.1309.2021.01.006. [Google Scholar]
  13. Lv, M., Ma, Z., Li, M., & Zheng, Z. (2019). Quantitative Analysis of Terrestrial Water Storage Changes Under the Grain for Green Program in the Yellow River Basin[J]. Journal of Geophysical Research: Atmospheres, 124(3). DOI:10.1029/2018JD029113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.