Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 01024
Number of page(s) 4
Section Multidimensional Research and Practice on Water Resources and Water Environment
DOI https://doi.org/10.1051/e3sconf/202452001024
Published online 03 May 2024
  1. Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L., & Rodrigo-Comino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci Total Environ, 658, 160–177. https://doi.org/10.1016/j.scitotenv.2018.12.115 [CrossRef] [PubMed] [Google Scholar]
  2. Leroux, A. D., Martin, V. L., & Zheng, H. (2018). Addressing water shortages by force of habit. Resource and Energy Economics, 53, 42–61. https://doi.org/10.1016/j.reseneeco.2018.02.004 [CrossRef] [Google Scholar]
  3. Li, B., Yang, L., Song, X., & Diamantopoulos, E. (2023). Identifying surface water and groundwater interactions using multiple experimental methods in the riparian zone of the polluted and disturbed Shaying River, China. Science of The Total Environment, 875. https://doi.org/10.1016/j.scitotenv.2023.162616 [Google Scholar]
  4. Li, J., Zhu, D., Zhang, S., Yang, G., Zhao, Y., Zhou, C., Zou, S. (2022). Application of the hydrochemistry, stable isotopes and MixSIAR model to identify nitrate sources and transformations in surface water and groundwater of an intensive agricultural karst wetland in Guilin, China. Ecotoxicology and Environmental Safety, 231. https://doi.org/10.1016/j.ecoenv.2022.113205 [Google Scholar]
  5. Meng, F., Xiao, C., Liang, X., Wang, G., Sun, Y., & Guo, D. (2021). Factors influencing surface water and groundwater interaction in alluvial fan. Journal of Water and Climate Change, 12(3), 679–695 https://doi.org/10.2166/wcc.2020.174 [CrossRef] [Google Scholar]
  6. Ndehedehe, C. E., Adeyeri, O. E., Onojeghuo, A. O., Ferreira, V. G., Kalu, I., & Okwuashi, O. (2023). Understanding global groundwater-climate interactions. Science of The Total Environment, 904. https://doi.org/10.1016/j.scitotenv.2023.166571 [Google Scholar]
  7. Qin, W., Han, D., Song, X., & Liu, S. (2021). Environmental isotopes (δ18O, δ2H, 222Rn) and hydrochemical evidence for understanding rainfallsurface water-groundwater transformations in a polluted karst area. Journal of Hydrology, 592. https://doi.org/10.1016/j.jhydrol.2020.125748 [Google Scholar]
  8. Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372. https://doi.org/10.1016/j.catena.2015.10.010 [CrossRef] [Google Scholar]
  9. Wu, C., Lu, C., Sun, Q., He, X., Yan, L., & Qin, T. (2023). Simulation of lake-groundwater interaction under unsteady-state flow using the sloping lakebed method. Journal of Hydrology, 626. https://doi.org/10.1016/j.jhydrol.2023.130299 [Google Scholar]
  10. Yang, N., Zhou, P., Wang, G., Zhang, B., Shi, Z., Liao, F., Gu, X. (2021). Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China. Journal of Hydrology, 598. https://doi.org/10.1016/j.jhydrol.2021.126243 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.