Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 01027
Number of page(s) 6
Section Multidimensional Research and Practice on Water Resources and Water Environment
DOI https://doi.org/10.1051/e3sconf/202452001027
Published online 03 May 2024
  1. K. A. Kvenvolden, “Gas hydrate and humans, ” Ann N Y Acad Sci, vol. 921, no. 1, pp. 17–22, 2000, doi: https://doi.org/10.1111/j.1749-6632.2000.tb06755.x. [CrossRef] [Google Scholar]
  2. P. Wu, Y. Li, X. Sun, W. Liu, and Y. Song, “Mechanical Characteristics of Hydrate-Bearing Sediment: A Review, ” Energy & Fuels, vol. 35, no. 3, pp. 1041–1057, 2020, DOI:10.1021/acs.energyfuels.0c03995. [Google Scholar]
  3. G. P. Glasby, “Potential impact on climate of the exploitation of methane hydrate deposits offshore, ” Mar Pet Geol, vol. 20, no. 2, pp. 163–175, 2003, DOI:10.1016/S0264-8172(03)00021-7. [CrossRef] [Google Scholar]
  4. Y. S. Yu, X. Zhang, J. W. Liu, Y. Lee, and X. Sen Li, “Natural gas hydrate resources and hydrate technologies: A review and analysis of the associated energy and global warming challenges, ” Energy Environ Sci, vol. 14, no. 11, pp. 5611–5668, Nov. 2021, DOI:10.1039/d1ee02093e. [CrossRef] [Google Scholar]
  5. W. B. Durham, S. H. Kirby, L. A. Stern, and W. Zhang, “The strength and rheology of methane clathrate hydrate, ” J Geophys Res Solid Earth, vol. 108, no. B4, p. e2002JB001872, 2003, DOI:10.1029/2002JB001872. [CrossRef] [Google Scholar]
  6. L. Wang et al., “Undrained triaxial tests on water-saturated methane hydrate-bearing clayey-silty sediments of the South China Sea, ” Canadian Geotechnical Journal, vol. 58, no. 3, pp. 351–366, 2021, doi: https://doi.org/10.1139/cgj-2019-0711. [CrossRef] [Google Scholar]
  7. Y. Li, L. Wang, S. Shen, T. Liu, J. Zhao, and X. Sun, “Triaxial Tests on Water-Saturated Gas Hydrate-Bearing Fine-Grained Samples of the South China Sea under Different Drainage Conditions, ” Energy and Fuels, vol. 35, no. 5, pp. 4118–4126, Mar. 2021, DOI:10.1021/acs.energyfuels.1c00071. [CrossRef] [Google Scholar]
  8. L. Wang et al., “Mechanical behaviours of gas-hydrate-bearing clayey sediments of the South China Sea, ” Environmental Geotechnics, vol. 9, no. 4, pp. 210–222, Jan. 2022, DOI:10.1680/jenge.19.00048. [CrossRef] [Google Scholar]
  9. Y. Li et al., “Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation, ” Energy, vol. 275, p. 127527, Jul. 2023, DOI:10.1016/j.energy.2023.127527. [CrossRef] [Google Scholar]
  10. H. Wang et al., “Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect, ” Energy, vol. 275, p. 127482, Jul. 2023, DOI:10.1016/j.energy.2023.127482. [CrossRef] [Google Scholar]
  11. F. Cheng et al., “Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization, ” Energy, vol. 264, Feb. 2023, DOI:10.1016/j.energy.2022.126137. [CrossRef] [Google Scholar]
  12. Y. Zhao, L. Kong, R. Xu, J. Liu, and S. Sang, “Strength behaviors of hydrate-bearing clayey-silty sediments with multiple factors, ” J Pet Sci Eng, vol. 219, Dec. 2022, DOI:10.1016/j.petrol.2022.111035. [Google Scholar]
  13. J. Xu, C. Xu, L. Huang, and M. Hyodo, “Strength estimation and stress-dilatancy characteristics of natural gas hydrate-bearing sediments under high effective confining pressure, ” Acta Geotech, vol. 18, no. 2, pp. 811–827, Feb. 2023, DOI:10.1007/s11440-022-01620-7. [CrossRef] [Google Scholar]
  14. P. Wu et al., “Hydrate-bearing sediment of the South China Sea: Microstructure and mechanical characteristics, ” Eng Geol, vol. 307, Sep. 2022, DOI:10.1016/j.enggeo.2022.106782. [Google Scholar]
  15. P. Wu et al., “Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state, ” Energy, vol. 263, Jan. 2023, DOI:10.1016/j.energy.2022.126126. [Google Scholar]
  16. M. Terzariol, J. Park, G. M. Castro, and J. C. Santamarina, “Methane hydrate-bearing sediments: Pore habit and implications, ” Mar Pet Geol, vol. 116, Jun. 2020, DOI:10.1016/j.marpetgeo.2020.104302. [CrossRef] [Google Scholar]
  17. J. A. Priest, M. Druce, J. Roberts, P. Schultheiss, Y. Nakatsuka, and K. Suzuki, “PCATS Triaxial: A new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan, ” Mar Pet Geol, vol. 66, pp. 460–470, 2015, DOI:10.1016/j.marpetgeo.2014.12.005. [CrossRef] [Google Scholar]
  18. M. Hyodo, J. Yoneda, N. Yoshimoto, and Y. Nakata, “Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed, ” Soils and Foundations, vol. 53, no. 2, pp. 299–314, 2013, DOI:10.1016/j.sandf.2013.02.010. [CrossRef] [Google Scholar]
  19. L. Lei, X. Gai, and Y. Seol, “Load-bearing characteristic of methane hydrate within coarsegrained sediments - Insights from isotropic consolidation, ” Mar Pet Geol, vol. 121, Nov. 2020, DOI:10.1016/j.marpetgeo.2020.104571. [Google Scholar]
  20. W. Zhang et al., “Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea, ” Mar Pet Geol, vol. 114, no. December 2019, p. 104191, 2020, DOI:10.1016/j.marpetgeo.2019.104191. [CrossRef] [Google Scholar]
  21. M. Jiang, J. He, J. Wang, B. Chareyre, and F. Zhu, “DEM analysis of geomechanical properties of cemented methane hydrate-bearing soils at different temperatures and pressures, ” International Journal of Geomechanics, vol. 16, no. 3, p. 04015087, 2015, DOI:10.1061/(ASCE)GM.1943-5622.0000612. [Google Scholar]
  22. S. Shen, X. Sun, L. Wang, Y. Song, and Y. Li, “Effect of Temperature on the Mechanical Properties of Hydrate-Bearing Sand under Different Confining Pressures, ” Energy&fuels, vol. 35, no. 5, pp. 4106–4117, 2021, DOI:10.1021/acs.energyfuels.1c00052. [Google Scholar]
  23. Z. Wu, W. Liu, J. Zheng, and Y. Li, “Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments, ” Appl Energy, vol. 261, p. 114479, 2020, DOI:10.1016/j.apenergy.2019.114479. [CrossRef] [Google Scholar]
  24. ASTM D7181-11, “Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils,” ASTM International, West Conshohocken, PA, pp. 1–12, 2011, DOI:10.1520/D7181-11. [Google Scholar]
  25. S. Shen, Y. Li, X. Sun, L. Wang, and Y. Song, “Mechanical properties of methane hydrate-bearing sandy sediments under various temperatures and pore pressures, ” J Pet Sci Eng, vol. 208, p. 109474, 2021, DOI:10.1016/j.petrol.2021.109474. [Google Scholar]
  26. S. Pinkert, “The lack of true cohesion in hydrate-bearing sands, ” Granul Matter, vol. 19, no. 3, 2017, DOI:10.1007/s10035-017-0742-5. [Google Scholar]
  27. L. Yang et al., “Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice, ” Appl Energy, vol. 331, Feb. 2023, DOI:10.1016/j.apenergy.2022.120372. [Google Scholar]
  28. Y. Li et al., “A particle-scale investigation of mechanical behavior of cemented hydrate-bearing sediment using Discrete Element Method, ” Geomechanics for Energy and the Environment, vol. 33, Mar. 2023, DOI:10.1016/j.gete.2023.100436. [Google Scholar]
  29. M. Kida, J. Yoneda, A. Masui, Y. Konno, Y. Jin, and J. Nagao, “Mechanical properties of polycrystalline tetrahydrofuran hydrates as analogs for massive natural gas hydrates, ” J Nat Gas Sci Eng, vol. 96, Dec. 2021, DOI:10.1016/j.jngse.2021.104284. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.