Open Access
Issue |
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
|
|
---|---|---|
Article Number | 02022 | |
Number of page(s) | 8 | |
Section | Carbon Emission Control and Waste Resource Utilization | |
DOI | https://doi.org/10.1051/e3sconf/202452002022 | |
Published online | 03 May 2024 |
- Behzadafshar, K., Sarafraz, M.E., Hasanipanah, M., Mojtahedi, S.F.F., Tahir, M.M. (2019) Proposing a new model to approximate the elasticity modulus of granite rock samples based on laboratory tests results. Bull Eng Geol Environ., 78: 1527–1536. https://doi.org/10.1007/s10064-017-1210-5. [CrossRef] [Google Scholar]
- Siddig, O., Elkatatny, S. (2021) Workflow to build a continuous static elastic moduli profile from the drilling data using artificial intelligence techniques. J Petrol Explor Prod Technol., 11: 3713–3722. https://doi.org/:10.1007/s13202-021-01274-3. [CrossRef] [Google Scholar]
- Emami Meybodi, E., DastBaravarde, A., Hussain, S.K., Karimdost, S. (2023) Machine-learning method applied to provide the best predictive model for rock mass deformability modulus (E m). Environmental Earth Sciences., 82: 149.10. https://doi.org/1007/s12665-023-10815-4. [CrossRef] [Google Scholar]
- Aboutaleb, S., Behnia, M., Bagherpour, R., Bluekian, B. (2018) Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull Eng Geol Environ., 77: 1717–1728. https://doi.org/10.1007/s10064-017-1043-2. [CrossRef] [Google Scholar]
- Elkatatny, S. (2022) Real-Time Prediction of the Dynamic Young’s Modulus from the Drilling Parameters Using the Artificial Neural Networks. Arab J Sci Eng., 47: 10933–10942. https://doi.org/10.1007/s13369-021-05465-2. [CrossRef] [Google Scholar]
- Torabi-Kaveh, M., Naseri, F., Saneie, S., Sarshari, B. (2015) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci., 8: 2889–2897. https://doi.org/10.1007/s12517-014-1331-0. [CrossRef] [Google Scholar]
- Koopialipoor, M., Asteris, P.G., Salih Mohammed, Alexakis, D.E., Mamou, A., Armaghani, D.J. (2022) Introducing stacking machine learning approaches for the prediction of rock deformation. Transportation Geotechnics., 34:100756. https://doi.org/10.1016/j.trgeo.2022.100756. [CrossRef] [Google Scholar]
- Matin, S.S., Farahzadi, L., Makaremi, S., Chelgani, S.C., Sattari, G.H.. (2018) Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Applied Soft Computing., 70: 980–987. https://doi.org/10.1016/j.asoc.2017.06.030. [CrossRef] [Google Scholar]
- Zhang, Y.Z., Zhang, N., Liu, P. (2021) Study on drilling dynamic characteristics and stratum information identification of anchor hole intypical coal-bearing stratum. Coal Science and Technology., 49: 177–185. https://doi.org/10.13199/j.cnki.cst.2021.02.021. [Google Scholar]
- Fan, R., Song, C.S., Liu, Z., Liu, W.J. (2012) Research on Dynamic Characteristics of Integrated Bit-RockDrillstring-Well System. AMR., 479-481: 739–742. https://doi.org/10.4028/www.scientific.net/AMR.47 9-481.739. [CrossRef] [Google Scholar]
- Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N. (2022) Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence., 115:105151. https://doi.org/10.1016/j.engappai.2022.105151. [CrossRef] [Google Scholar]
- Li, Y., Wang, H., Yang, Z., Yang, J., Chen, Z. (2023) Stacking Ensemble Learning-Based Load Identification Considering Feature Fusion by CyberPhysical Approach. IEEE Sensors J., 23: 5997–6007. https://doi.org/10.1109/JSEN.2023.3241000. [CrossRef] [Google Scholar]
- Zhang, H., Li, J.L., Liu, X.M., Dong, C. (2021) Multi- dimensional feature fusion and stacking ensemble mechanism for network intrusion detection. Future Generation Computer Systems., 122: 130–143. https://doi.org/10.1016/j.future.2021.03.024. [CrossRef] [Google Scholar]
- Nguyen, Q.H., Ly, H.B., Nguyen, T.A., Phan, V.H., Nguyen, L.K., Tran, V.Q. (2021) Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams. Xie T., editor. PLoS ONE., 16: e0247391. https://doi.org/10.1371/journal.pone.0247391. [CrossRef] [Google Scholar]
- Zhou, J., Qiu, Y., Zhu, S., Armaghani, D.J., Khandelwal, M., Mohamad, E.T. (2021) Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Underground Space., 6: 506–515. https://doi.org/10.1016/j.undsp.2020.05.008. [CrossRef] [Google Scholar]
- Nguyen, N.H., Tong, K.T., Lee, S., Karamanli, A., Vo, T.P. (2022) Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model. Engineering Structures., 269:114768. https://doi.org/10.1016/j.engstruct.2022.114768. [CrossRef] [Google Scholar]
- Chen, G., Chen, M., Hong, G., Lu, Y., Zhou, B., Gao, Y. (2020) A New Method of Lithology Classification Based on Convolutional Neural Network Algorithm by Utilizing Drilling String Vibration Data. Energies., 13:888. https://doi.org/10.3390/en13040888. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.