Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 02024
Number of page(s) 6
Section Carbon Emission Control and Waste Resource Utilization
DOI https://doi.org/10.1051/e3sconf/202452002024
Published online 03 May 2024
  1. Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg G.F. CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. Int J Greenhouse Gas Control 2007;1:135–42. [CrossRef] [Google Scholar]
  2. Alivand M.S., Mazzheri O., Wu Y., et al. Catalytic solvent regeneration for energy-efficient CO2 capture. ACS Sustainable Chemistry and Engineering, 2020, 8(51): 18755–18788. [CrossRef] [Google Scholar]
  3. Huang Z.Y., Li J., An H.G., et al. Techno-economic Study on Energy-saving Retrofit and Flue Gas Waste Heat Utilization in Natural Gas Combined Cycle-CO2 Capture Plant. Proceedings of the CSEE, 2017, 37(14):4147–4155. [Google Scholar]
  4. Li B., Duan Y., Luebke D., Morreale B. Advances in CO2 capture technology: a patent review. Appl Energy 2013;102:1439–47. [CrossRef] [Google Scholar]
  5. Huang B., Xu S.S., Gao S.W., Liu L.B., Tao J.Y., Niu H.W., Cai M. and Cheng J. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station. Applied Energy, 2010, 87(11):3347–3354. [CrossRef] [Google Scholar]
  6. An H.G., Tong Y.Y., Zhao Y., Li C.Z. and Huang Z.Y. Practice of CO2 Absorption Process in Natural Gas Power Plant. Electric Power, 2016, 49(9):175–180. [Google Scholar]
  7. Mai B., Indra G., Vinvent V., Paul F., Erik M. Flexible operation of CSIRO’s post-combustiom CO2 capture pilot at the AGL Loy Yang power station. Int J Greenh Gas Control 2016, 48:188–203. [CrossRef] [Google Scholar]
  8. Yuan J.H., Wang Y., Zhang W.R., and Zhang J. Mapping the economy of coal power plants retrofitted with post-combustion and biomass cofiring carbon capture in China. Environmental Science and Pollution Research, 2023. [Google Scholar]
  9. Knudsen J.N., Andersen J., Jensen J.N. and Biede O. Results from test campaigns at the 1 t/h CO2 postcombustion capture pilot-plant in Esbjerg under the EU FP7 CESAR project. 1st Post Combustion Capture Conference, 2011: 2–3. [Google Scholar]
  10. Lijima M., Nagayasu T., Kamijyo T. and Nakatani S. MHI's energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 2011, 48 (1) 26–32. [Google Scholar]
  11. Gu Y.Z., Wang T.K., Huang Y., Zhao R. and Xu D. Carbon dioxide capture,utilization and storage technology and engineering application for coal- fired power plants. Clean Coal Technology, 2023, 29(4) :98–108. [Google Scholar]
  12. Wang J.Y., Niu H.W., Liu L.B., et al. Development and engineering application of new absorption solvent for CO2 capture from flue gas of coal-fired power plant. Thermal Power Generation, 2021, 50(1): 54–61. [Google Scholar]
  13. Sun L.C., Wang Z.R., Wu C., Wang K.L. and Zhang S.M. Research on operation optimization of a 10 000 t/a carbon capture project for coal-fired power plants. Huadian Technology, 2021, 43(6): 69–78. [Google Scholar]
  14. Jiang W., Luo X., Gao H.X., Liang Z.W., Liu B., Paitoon T. and Hu X.Y. A comparative kinetics study of CO2 absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions. AIChE Journal, 2018, 64(4): 1350–1358. [CrossRef] [Google Scholar]
  15. Nwaoha C., Idem R., Supap T., Saiwan C., Tontiwachwuthikul P., Rongwong W., Al-Marri M.J., and Benamor A. Heat Duty, Heat of Absorption, Sensible Heat and Heat of Vaporization of 2- Amino-2-Methyl-1-Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) Tri-Solvent Blend for Carbon Dioxide (CO2) Capture. Chemical Engineering ence, 2017:26–35. [CrossRef] [Google Scholar]
  16. Xu Z., Wang S., Chen C. CO2 absorption by biphasic solvents: Mixtures of 1,4-Butanediamine and 2-(Diethylamino)-ethanol. International Journal of Greenhouse Gas Control, 2013, 16: 107–115. [CrossRef] [Google Scholar]
  17. Nwaoha C., Saiwan C., Supap T., Idem R., Tontiwachwuthikul P., Rongwong W., Al-Marri M.J., and Benamor A. Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). International Journal of Greenhouse Gas Control, 2016, 53:292–304. [CrossRef] [Google Scholar]
  18. Dubois L., Thomas D. Screening of aqueous aminebased solvents for postcombustion CO2 capture by chemical absorption. Chem. Eng. Technol., 2012, 35:513–524. [CrossRef] [Google Scholar]
  19. Balsora H., Mondal M.K. Solubility of CO2 in an Aqueous Blend of Diethanolamine and Trisodium Phosphate. Journal of Chemical & Engineering Data, 2011, 56(12). [Google Scholar]
  20. Liu Z.Z., Fang M.X., Xia Z.X., Wang T. and Chen Z.L. Optimization of CO2 chemical absorption process based on high concentration MEA. Proceedings of the CSEE, 2021, 41(11): 3666–3676. [Google Scholar]
  21. Bayati B., Mirshekari M., Veisy A., and Gando-Ferreira L.M. Removal of HSS from industrial amonie solution by anionic resin. Chemical Papers, 2019, 73: 491–500. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.