Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 02034
Number of page(s) 8
Section Carbon Emission Control and Waste Resource Utilization
DOI https://doi.org/10.1051/e3sconf/202452002034
Published online 03 May 2024
  1. Smetacek, V., and S.W.A. Naqvi. “The next Generation of Iron Fertilization Experiments in the Southern Ocean.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1882, Nov. 2008, pp. 3947–67. royalsocietypublishing.org (Atypon), https://doi.org/10.1098/rsta.2008.0144. [CrossRef] [PubMed] [Google Scholar]
  2. Martínez-García, Alfredo, et al. “Iron Fertilization of the Subantarctic Ocean During the Last Ice Age.” Science, vol. 343, no. 6177, Mar. 2014, pp. 1347–50. DOI.org (Crossref), https://doi.org/10.1126/science.1246848. [CrossRef] [PubMed] [Google Scholar]
  3. Sharoni, S., & Halevy, I. (2020). Nutrient ratios in marine particulate organic matter are predicted by the population structure of well-adapted phytoplankton. Science Advances, 6(29). DOI: 10.1126/sciadv.aaw9371 [CrossRef] [PubMed] [Google Scholar]
  4. Rohr, T. (2019). Southern Ocean Iron Fertilization: An argument against commercialization but for continued research amidst lingering uncertainty. Journal of Science Policy & Governance. doi: 10.38126/jspg150114 [Google Scholar]
  5. Development of a comprehensive framework to assess the impacts of climate change on Stream Health. (2015). ASABE 1st Climate Change Symposium: Adaptation and Mitigation. doi: 10.13031/cc.20152092734 [Google Scholar]
  6. Robock, Alan. “The Volcanic Contribution to Climate Change of the Past 100 Years.” Developments in Atmospheric Science, edited by M.E. Schlesinger, vol. 19, Elsevier, 1991, pp. 429–43. ScienceDirect, https://doi.org/10.1016/B978-0-444-88351-3.50034-9. [CrossRef] [Google Scholar]
  7. The iron hypothesis. (2016). Iron Cycle in Oceans, 79–90. doi: 10.1002/9781119136859.ch7 [Google Scholar]
  8. (2023a). Retrieved from https://coastalscience.noaa.gov/science-areas/habs/hab-monitoring-system/ [Google Scholar]
  9. Tedengren, M. (2021). Eutrophication and the disrupted nitrogen cycle. Ambio, 50(4), 733–738. doi: 10.1007/s13280-020-01466-x [CrossRef] [PubMed] [Google Scholar]
  10. Deng, Y. N., Rioual, P., Jones, V. J., Sun, C., & Mingram, J. (2023). A palaeoecological study investigating the impacts of multiple tephra depositions on a lacustrine ecosystem in northeast China, using diatoms as environmental indicators. Journal of Paleolimnology, 70(1), 1–22. doi: 10.1007/s10933-023-00280-1 [CrossRef] [Google Scholar]
  11. News, U. (2022). Retrieved from https://www.hawaii.edu/news/2022/10/12/tonga-eruption-phytoplankton-bloom/ [Google Scholar]
  12. http://berkeleyearth.lbl.gov/auto/Global/Complete_T AVG_complete.txt. Accessed 14 Apr. 2022. [Google Scholar]
  13. (2023). Retrieved from https://www.nasa.gov/technology/nasa-joins-forces-to-put-satellite-eyes-on-threat-to-u-s-freshwater/ [Google Scholar]
  14. Patrick, M. R., Houghton, B. F., Anderson, K. R., Poland, M. P., Montgomery-Brown, E., Johanson, I., … Elias, T. (2020). The cascading origin of the 2018 kilauea eruption and implications for future forecasting. Nature Communications, 11(1). doi: 10.1038/s41467-020-19190-1 [CrossRef] [PubMed] [Google Scholar]
  15. Gudmundsson, M. T., Thordarson, T., Höskuldsson, Á., Larsen, G., Björnsson, H., Prata, F. J., Jónsdóttir, I. (2012). Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Scientific Reports, 2(1). doi: 10.1038/srep00572 [CrossRef] [Google Scholar]
  16. Journalist, Science. “Phytoplankton Blossom off Hawaii Island Fueled by Kilauea Lava | Science- Atlas. Com.” In the Light of the Science!, 3 Sept. 2021, https://science-atlas.com/biology/phytoplankton-blossom-off-hawaii-island-fueled-by-kilauea-lava/. [Google Scholar]
  17. Johnson, Matthew S., et al. “Carbon Dioxide Emissions During the 2018 Kilauea Volcano Eruption Estimated Using OCO-2 Satellite Retrievals.” Geophysical Research Letters, vol. 47, no. 24, 2020, p. e2020GL090507. Wiley Online Library, https://doi.org/10.1029/2020GL090507. [Google Scholar]
  18. Wilson, Samuel T., et al. “Kilauea Lava Fuels Phytoplankton Bloom in the North Pacific Ocean.” Science, vol. 365, no. 6457, Sept. 2019, pp. 1040–44. science.org (Atypon), https://doi.org/10.1126/science.aax4767. [CrossRef] [PubMed] [Google Scholar]
  19. Zambri, Brian, et al. “Modeling the 1783-1784 Laki Eruption in Iceland: 2. Climate Impacts.” Journal of Geophysical Research: Atmospheres, vol. 124, no. 13, 2019, pp. 6770–90. Wiley Online Library, https://doi.org/10.1029/2018JD029554. [CrossRef] [Google Scholar]
  20. Achterberg, Eric P., et al. “Natural Iron Fertilization by the Eyjafjallajökull Volcanic Eruption.” Geophysical Research Letters, vol. 40, no. 5, 2013, pp. 921–26. Wiley Online Library, https://doi.org/10.1002/grl.50221. [CrossRef] [Google Scholar]
  21. Olgun, N., Duggen, S., Croot, P. L., Delmelle, P., Dietze, H., Schacht, U., … Garbe-Schönberg, D. (2011). Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Global Biogeochemical Cycles, 25 (4). doi: 10.1029/2009gb003761 [Google Scholar]
  22. Sinclair Comments. 3 July 2011, https://web.archive.org/web/20110703111853/http://146.186.172.254/nas/Panelists/Sinclair%20Comments.html. [Google Scholar]
  23. Kim, Tai-Jin. “Appropriate Location and Deployment Method for Successful Iron Fertilization.” Open Journal of Marine Science, vol. 10, no. 3, 3, May 2020, pp. 149–72. www.scirp.org, https://doi.org/10.4236/ojms.2020.103012. [CrossRef] [Google Scholar]
  24. Martin, John H., et al. “Iron Deficiency Limits Phytoplankton Growth in Antarctic Waters.” Global Biogeochemical Cycles, vol. 4, no. 1, 1990, pp. 5–12. Wiley Online Library, https://doi.org/10.1029/GB004i001p00005. [CrossRef] [Google Scholar]
  25. Browning, Thomas J., et al. “Nutrient Co-Limitation at the Boundary of an Oceanic Gyre.” Nature, vol. 551, no. 7679, 7679, Nov. 2017, pp. 242–46. www.nature.com, https://doi.org/10.1038/nature24063. [CrossRef] [PubMed] [Google Scholar]
  26. Emerson, David. “Biogenic Iron Dust: A Novel Approach to Ocean Iron Fertilization as a Means of Large Scale Removal of Carbon Dioxide From the Atmosphere.” Frontiers in Marine Science, vol. 6, 2019. Frontiers, https://www.frontiersin.org/article/10.3389/fmars.2019.00022. [CrossRef] [Google Scholar]
  27. (N.d.). Retrieved from https://www.newenergytimes.com/v2/sr/companies/Planktos/PlanktosBlamesEnvironmentalists.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.