Open Access
Issue
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
Article Number 01009
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202452201009
Published online 07 May 2024
  1. Tang Xiaoguo, Kabat Daniel M., Natkin Robert J., et al. Ford P2000 Hydrogen Engine Dynamometer Development[J]. SAE Transactions, 2002, 111. [Google Scholar]
  2. S. Verhelst. Recent progress in the use of hydrogen as a fuel for internal combustion engines[J]. International Journal of Hydrogen Energy, 2014, 39(2). [Google Scholar]
  3. S. K. Sharma, P. Goyal, R. K. Tyagi. Hydrogen-Fueled Internal Combustion Engine: A Review of Technical Feasibility[J]. International Journal of Performability Engineering, 2015, 11(5). [Google Scholar]
  4. H. Fayaz, R. Saidur, N. Razali, et al. An overview of hydrogen as a vehicle fuel[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8). [Google Scholar]
  5. Hu Zhen, Ma Wenzhong, Ma Junjie, et al. Experimental Research on Performance Development of Direct Injection Hydrogen Internal Combustion Engine with High Injection Pressure[J]. SAE International Journal of Engines, 2023, 16 (7). [Google Scholar]
  6. Vinoth Kanna I., Paturu Pallavi. A study of hydrogen as an alternative fuel[J]. International Journal of Ambient Energy, 2020, 41(12). [Google Scholar]
  7. Puyan Xu, Changwei Ji, Shuofeng Wang, et al. Realizing low emissions on a hydrogen-fueled spark ignition engine at the cold start period under rich combustion through ignition timing control[J]. International Journal of Hydrogen Energy, 2019, 44(16):8650–8658. [CrossRef] [Google Scholar]
  8. Baigang Sun, Huayu Tian, Fushui Liu. The distinctive characteristics of combustion duration in hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2014, 39(26):14472–14478. [CrossRef] [Google Scholar]
  9. Zhenzhong Yang, Lijun Wang, Shusheng Xiong, et al. Research on the optimizing control technology based on fuzzy-neural network for hydrogen-fueled engines[J]. International Journal of Hydrogen Energy, 2006, 31(15):2370–2377. [CrossRef] [Google Scholar]
  10. Changwei Ji, Huaiyu Wang, Cheng Shi, et al. Multi-objective optimization of operating parameters for a gasoline Wankel rotary engine by hydrogen enrichment[J]. Energy Conversion and Management, 2021, 229:113732. [CrossRef] [Google Scholar]
  11. Vipin Dhyani, K. A. Subramanian. Experimental investigation on effects of knocking on backfire and its control in a hydrogen fueled spark ignition engine[J]. International Journal of Hydrogen Energy, 2018, 43(14):7169–7178. [CrossRef] [Google Scholar]
  12. Xie Cheng, Sun Baigang, Han Zhen. Investigation on Jet Characteristics of Hydrogen Injection and Injection Strategy for Backfire Control in a Port Fuel Injection Hydrogen Engine[J]. Energy Procedia, 2017, 105:1588–1599. [CrossRef] [Google Scholar]
  13. Junfa Duan, Fushui Liu, Baigang Sun. Backfire control and power enhancement of a hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2014, 39(9):4581–4589. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.